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ABSTRACT 

In this thesis, a generic genetic algorithm (GA) is presented that is implemented 

on a reconfigurable computer.  Our GA is implemented such that many problems can be 

solved by simply adapting the problem to the GA.  For example, part of this process 

involves the customization of the fitness function of the given problem to the GA.  The 

size of the problem is limited by the capacity of a field programmable gate array that is 

part of the reconfigurable computer.   We apply this to bent functions, which are Boolean 

functions that are well suited for cryptographical applications and are extremely rare.  

Experimental results show the effectiveness of this technique.  Different methods are 

used to discover bent functions.  These methods take advantage of the properties of bent 

functions to reduce the total search space.  This allows a brute force search to be 

conducted on the reduced search space to locate the set of bent functions in that search 

space.  Two different methods are used to reduce the search space.  The first is through 

rotationally symmetric functions, which reduces the number of bent function that can be 

found, while the second is by the degree of the function, which locates all bent functions. 
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 xv

EXECUTIVE SUMMARY 

In this thesis, several methods are shown to locate bent functions.  Bent functions 

are well suited for cryptographical applications, such as in the substitution box in the 

DES encryption standard, or the Grain-128 cipher [7].  To the best of our knowledge, this 

is the first time that a reconfigurable computer has been used to locate bent functions on 

more than six variables.  Due to the repetitive nature of an algorithm needed to determine 

if a function is bent, reconfigurable computers are ideally suited to locate them, 

especially when compared to a general purpose computer. 

As a result of this thesis, the Naval Postgraduate School (NPS) now has 

5,425,430,528 6-variable bent functions, and 1,933,312 8-variable ROTS bent functions 

for use in additional thesis and research work.  Additionally, calculators have been 

created to allow a nonlinearity calculation to be made on 8- and 10-variable functions.  

This was not previously possible at NPS due to a lack of memory error that occurs when 

attempting to complete the nonlinearity calculation using a previous instantiation of the 

algorithm. 

Multiple ways were examined to locate bent functions.  Since there is not enough 

time to conduct a brute force search of all functions on more than four variables, three 

different means were used to restrict the search space to locate bent functions.  The first 

was by examining rotationally symmetric (ROTS) functions.  The second method was to 

search for them according to the degree of the function as revealed by its algebraic 

normal form.  This is accomplished through sequentially enumerating all of the functions 

according to their degree through an index.  This method revealed an interesting fact that 

bent functions commonly occur with consecutive indices.  Next, a genetic algorithm was 

used to create a sieve to locate ROTS bent functions.  These results show that, through a 

well-designed chromosome, fitness function, crossover point and minimum fitness value, 

the ability to locate bent functions is drastically increased.  Finally, a non-traditional 

approach towards GAs is taken to identify bent functions on 4 variables using other 4 

variable bent functions. 
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I. INTRODUCTION  

A. CRYPTOLOGY APPLICATIONS 

Two of the key aspects of a cryptographic system are confusion and diffusion 

[14], [10].  Diffusion is the process by which repetitive information is “dissipated” over 

an entire message.  A simple case of confusion would be to replace one letter, ‘E’, with 

another letter, ‘K’.  This method does little to improve the secrecy of the message since 

the frequency graph of the letters has not changed.  In order to make this method more 

practical, several substitutions must be made [14]. 

In a paper frequently described as “small” and “beautiful,” Rothaus introduces a 

new type of function known as a bent function [5], [6], [13].  The term “bent” was 

probably chosen by Rothaus because it suggests the opposite of “linear” [3].  These 

functions are most notable because they have the highest nonlinearity among all functions 

on the same number of variables.  Because of this, they are well suited for 

cryptographical applications, including being used as part of the substitution box in the 

DES encryption, or the Grain-128 cipher, to mention just a few [7]. 

B. GENETIC ALGORITHMS (GA) 

Several problems that need to be solved in a business environment involve a cost-

benefit analysis.  As various scenarios stress the variables differently, desirable 

components might exist in different solutions.  GAs take advantage of two solutions 

yielding good answers by merging the parameters of the two solutions.  Although the 

groundwork on GA started in the 1950s, the interaction between a conventional 

microprocessor and a reconfigurable computer is allowing GAs to enter a new realm of 

truly parallel operations.  Although a GA has been implemented on an FPGA, this thesis 

will examine their implementation in a more parallel manner [19]. 
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C. RECONFIGURABLE COMPUTING ON THE SRC-6 

The SRC-6 is a microprocessor based computer that contains additional boards 

known as Multi-Adaptive Processing (MAPs).  Each MAP contains three Xilinx Field 

Programmable Gate Arrays (FPGAs), two running user programs, and the third 

controlling the others [16].  To understand how this project helps to locate bent functions, 

it is necessary to know how the SRC-6 operates.  The SRC-6 operates via a dual core 

general purpose CPU communicating with the FPGAs.  There are two methods in which 

the FPGAs can be programmed to solve a problem.  The first is through a hardware 

description language (HDL), either Verilog or VHDL, and the other is through the high 

level languages C or FORTRAN.  The remainder of this paper will focus on 

programming the SRC-6 with Verilog and C.  Regardless of whether the FPGA is 

programmed in C or HDL, where the problem solution design is written, the interface 

between the microprocessors and the FPGA is through C code.  Figure 1 demonstrates 

the interaction between the various components of the SRC-6. 

 

Figure 1  SRC-6 data flow path 

The programmer is able to access the FPGAs on the SRC-6 by first writing 

C/C++ code that is executed on the general purpose computer.  When he wants to have 

the FPGAs process data, he merely makes a C style function call that invokes the SRC-6.  

Next, program execution is passed to a subroutine that is written in C.  This subroutine, 

subr.mc, is compiled to operate on the FPGA. 

When a problem is solved through Verilog, the programmer designs the circuit as 

he would for any FPGA.  The file describing this circuit is macro.v.  This module has two 

interfaces to the subr.mc C code.  The first is a blackbox interface (blk.v) that would be 

analogous to a function prototype in C.  This interface merely restates the module name 
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and port declarations from the module source code.  The other interface (info) includes 

information about the macro, such as if it is pipelined or stateful.  It also specifies its 

latency and additional control signals that need to be applied to the circuit, such as clear 

and clock signals.  This code is directly parsed to generate the interface between the C 

code and the Verilog code. 

D. GOAL OF THIS THESIS 

The goal of this thesis is to determine if GAs are useful in finding bent functions.  

In the process of doing this, several different methods of looking for bent functions will 

be examined.  These methods restrict the search space to make it possible to enumerate 

all of the bent functions.  In doing so, it is desired to see how these methods can be 

adapted for use in GAs. 

E. THESIS ORGANIZATION 

This thesis is organized as follows.  Chapter II describes bent functions and how 

to find them.  Chapter III is a discussion on genetic algorithms, and how one is 

implemented on the SRC-6.  Chapter IV is a discussion on how bent functions were 

found for this thesis.  Chapter V is a summary of the results.  Appendix A contains 

additional information on the SRC-6.  Appendix B are the lessons learned while 

conducting the research for this thesis.  Finally, Appendix C is the Verilog code for the 

genetic algorithm. 
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II. BENT FUNCTIONS 

A. BACKGROUND 

Bent functions contain many properties that must be examined.  These properties 

are important since they are used to determine if a function is bent, and provide insight in 

how to construct a function that might be bent. 

1. Definitions 

a. Linear or Affine Function 

A linear function is the constant 0, or the exclusive OR of one or more 

variables.  An affine function is a linear function, or the complement of a linear function. 

b. Nonlinearity (NL) 

The nonlinearity of a function is the least number of bits that are required 

to be changed in order to convert the function into some affine function. 

c. Bent Function 

A function on an even number of variables is called bent, if it has the 

maximum nonlinearity among all other functions on the same number of variables. 

d. A-class 

Suppose f  is a bent function and a  is an affine function.  It has been 

shown that g f a= ⊕ , is also bent [5].  Because of this, we say that f  and g  are in the 

same A-class. 
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e. Truth Table (TT) 

The truth table of a function f , specifies the value of f  for all 

assignments of values to the variables.  For example:  the TT of 1 1 2 1 2 1 2f x x x x x x= + +  is 

1110, where 1 2x x =  00, 01, 10 and 11 map to 1, 1, 1, and 0, respectively. 

f. Algebraic Normal Form (ANF) 

The ANF of a function f  is the exclusive OR of product terms, where all 

variables occur uncomplemented.  For example, consider the ANF of 1 1 21f x x= ⊕ . 

g. Degree 

The degree of a function is the maximum number of variables that exist in 

any of its terms as expressed in the ANF.  For example, let f and g  be functions on 3 

variables, 1x , 2x  and 3x , 1 2 3f x x x= ⊕  and 1 2 3 1g x x x= ⊕ .  Then, f  and g  have degree 

2 and 3, respectively. 

h. Co-functions 

The TT form of a function f  can be considered as a double word 

0 1i ix xf f→ →  which are f  with ix  replaced by 0 and 1 respectively.  Each of the words that 

comprise the TT form of a function is called a co-function.  The co-function containing 

the MSB is referred to as the “high” co-function, and the other co-function is referred to 

as “low”. 

2. Properties 

a. Rotationally Symmetric (ROTS) Functions 

A function is ROTS if 0 1 2 1 1 2 1 0( , ,... , ) ( , ,..., , )n n nf a a a a f a a a a− − −= .  The 

number of bits in an n -variable ROTS function is R  [5]. 
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b. Maximum Nonlinearity 

The maximum nonlinearity of an n-variable function 

11 2
max ( ) 2 2

n
nNL n

−−= −  [13]. 

c. Weight 

The weight fW of a function f  is the number of ones in its truth table.  A 

bent function f has weight 
11 2( ) 2 2

n
n

fW n
−−= ±  [13]. 

d. Summary 

Table 1 provides a listing of the properties on 4, 6, 8 and 10 variables. 

n  2n  R  12n+  max ( )NL n  fW  

4 16 6 32 6 8 2±  

6 64 14 128 28 32 4±  

8 256 36 512 120 128 8±  

10 1024 108 2048 496 512 16±  

Table 1.   Bent functions properties by number of variables 

B. REPRESENTATIONS 

1. Truth Table 

Consider Table 2 for the expression 2x  on three variables.  It has a truth table 

representation of 0 33x .  The MSB corresponds to the table entry of, 1 2 3 111x x x = , while 

the least significant bit (LSB) entry corresponds to entry 1 2 3 000x x x = .  The hexadecimal 

representation of 200110011 0 33x=  has the MSB (Most Significant Bit) being written as 

the leftmost bit. 
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1 2 3x x x  2x  or 2 1x ⊕  

000 1 (LSB) 

001 1 

010 0 

011 0 

100 1 

101 1 

110 0 

111 0 (MSB) 

Table 2.   Truth table 

2. Algebraic Normal Form 

A function is expressed in its algebraic normal form (ANF) by: 

0 1 3 2 2 3 2 3 4 1 5 1 3 6 1 2 7 1 2 31f c c x c x c x x c x c x x c x x c x x x= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕  

Where 0 1 7, ,...,c c c  are the values from the ANF table where 7c corresponds to the MSB.  

Consider the expression 1 2 3x x x⊕  in Table 3.  When it is represented in its ANF, its 

expression is 201000010 0 42x= .  Again, the left most bit in the hexadecimal notation is 

the MSB.  However, this time the entry 1 or 0 in the truth table corresponds to whether 

that term exists or not in the expression.  For example, the expression 1 2 3x x x⊕  has two 

terms, 1 2x x  and 3x .  Thus, the entries 110  and 001  have a one in their associated column 

to signify that the term exists in the expression.  The ANF is a useful representation, 

because it can be used to identify bent functions of the same A-class.  If two bent 

functions are of the same A-class, then all of their non-linear term coefficients will be the 

same. 
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Term 1 2 3x x x  1 2 3x x x⊕  or 

1 3 2 3 1 2 3x x x x x x x+ +  

01c  000 0 (LSB) 

1 3c x  001 1 

2 2c x  010 0 

3 2 3c x x  011 0 

4 1c x  100 0 

5 1 3c x x  101 0 

6 1 2c x x  110 1 

7 1 2 3c x x x 111 0 (MSB) 

Table 3.   ANF table 

3. Transeunt Triangle 

The transeunt triangle is a data structure that allows the conversion from the truth 

table form to the ANF, and vice versa [18], [2].  Regardless of the mode of operation, the 

transeunt triangle receives and processes its data in the same manner.  The data for the 

current format is placed along the bottom row of the triangle, with the MSB being the 

right most bit.  The bits on the next higher row are created by the exclusive ORing of the 

adjacent bits in the row below it.  The ordering of these bits corresponds to the truth or 

ANF table shown in Table 3 being rotated counter-clockwise90 .  The output table is 

read along the left side of the triangle.  Its corresponding values would be as if the above 

tables are rotated 120  counter-clockwise.  Figures 2, 3 and 4 show the transeunt triangles 

for Tables 2 and 3. 
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Figure 2  Transeunt triangle conversion for 2x  to 2 1x ⊕  
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Figure 3  Transeunt triangle for 1 2 3x x x⊕  to 1 3 2 3 1 2 3x x x x x x x+ +  



 11

1
1

1
0

1
1

1
0

1
0

0
1

1
1

0
0

1
0

1
0

0
0

0
0

x 3
x 2

x 1

1
1

1
0

1
1

1
0

1
0

0
1

1
1

0
0

1
0

1
0

0
0

0
0

x 3
x 2

x 1

1
1

10
1

11
0

10
0

11
1

00
1

01
0

00
0

0x3
x2

x1

1
1

10
1

11
0

10
0

11
1

00
1

01
0

00
0

0x3
x2

x1 00000101
0000111

000100
00110

0101
111

00
0

00000101
0000111

000100
00110

0101
111

00
0

LSB MSB

LS
B

MSB

 

Figure 4  Transeunt triangle for 2 1x ⊕  to 2x  

The transeunt triangle shown in Figure 4 is the inverse of the Figure 2 .  On initial 

observation the truth table expression would be 1 2 3 1 2 3 1 2 3 1 2 3x x x x x x x x x x x x+ + + .  This, 

however, can be easily simplified as in Figure 5. 

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 3 1 2 3 3

1 2 1 2

2 1 1

2

( ) ( )

( )

x x x x x x x x x x x x
x x x x x x x x

x x x x
x x x

x

+ + + =
+ + + =

+ =
+ =

 

Figure 5  Truth table simplification 

C. BENT FUNCTION DISCOVERY 

There are several different approaches that can be used to discover bent functions.  

Regardless of the tool used to restrict the search space to a manageable size, this research 

uses the same algorithm to determine if a function is bent. 
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1. General Case 

... ...

 

Figure 6  General case nonlinearity calculation 

Figure 6 shows a general algorithm to determine the nonlinearity of a function.  

The function under test is exclusive ORed with each of the affine functions, and the 

number of ones in each function is counted.  The minimum number of ones is then 

determined over all of the 12n+  calculations which correspond to each of the affine 

functions.  The resulting number is then compared to the maximum nonlinearity for the 

given number of variables.  If they are the same, then the function is bent. 

2. Brute Force 

The easiest method to determine which functions are bent is to perform a brute 

force attack.  By doing so, the nonlinearity of all functions in S  is calculated.  By doing 

so, one also generated a histogram showing the distribution of the nonlinearities.  This is 

beneficial in that it also verifies the maximum nonlinearity equation, max ( )NL n .  This 

method is time consuming for 6n < and impractical for 6n ≥ . 

3. ROTS 

It has shown that rotationally symmetric functions are rich in bent functions [5].  

This means that by enumerating only the ROTS functions, which is considerably smaller 

than the total number of functions, bent functions can be more readily discovered.  The  
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first step in this process is to determine all of the ROTS functions.  Next, each bit is 

mapped to an index.  Table 4 is the Verilog code that produces the necessary mapping for 

4n = . 

assign TT[   0] = RSI[ 0];
assign TT[   1] = RSI[ 1];
assign TT[   2] = RSI[ 1];
assign TT[   3] = RSI[ 2];
assign TT[   4] = RSI[ 1];
assign TT[   5] = RSI[ 3];
assign TT[   6] = RSI[ 2];
assign TT[   7] = RSI[ 4];
assign TT[   8] = RSI[ 1];
assign TT[   9] = RSI[ 2];
assign TT[  10] = RSI[ 3];
assign TT[  11] = RSI[ 4];
assign TT[  12] = RSI[ 2];
assign TT[  13] = RSI[ 4];
assign TT[  14] = RSI[ 4];
assign TT[  15] = RSI[ 5];  

Table 4.   ROTS mapping 

From this table, a 6-bit counter can be applied to the rotationally symmetric index 

(RSI) to generate the truth table representation of the ROTS functions.  This 

representation generates the function under test, which is applied to the general case 

algorithm to determine the nonlinearity as shown in Figure 7. 

... ...

 

Figure 7  ROTS nonlinearity calculation 
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4. By Degree 

It is known that the highest degree of a bent function is 
2
n  [16].  Furthermore, in 

the ANF of a function, the linear terms can be ignored, since they only differentiate two 

bent functions in the same A-class.  This, significantly reduces the total search space to 

terms of degree 2, 3, …, and 
2
n .  For the case of 6n = , the highest degree of a bent 

function is 3.  This means that the only functions that must be enumerated are those of 

degree 3 and 2.  Thus, the total number of bits in the search space is now 

6 6
15 20 35

2 3
⎛ ⎞ ⎛ ⎞

+ = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  This results in only 71.86 10 %x −  of the original search space of 

642  functions, if the search is exhaustive.  Figure 8 shows the original algorithm as 

modified to accomplish this. 

AFN0

AFN2
n+1

Ones 

Count
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Count

TT under 
test

min(x0,x1,…,x2
n+1)

u1

x2
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2n
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2n
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2n
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Figure 8  Nonlinearity calculation by degree 

5. Complement Optimization 

The number of affine functions that need to be evaluated can be cut by ½.  This is 

done by recognizing the relationship between nonlinearity of a function with respect to a 

particular affine function, and that affine function’s complement, and will be shown by 

example.  For any given n  variable bent function, there are 12n+ affine functions.  

However, because of the linear nature of the affine function, it is only required to 

enumerate 2n  of them since their complement will yield the other 2n  affine functions.  

This property relationship can be applied to the nonlinearity of a function. 
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Consider the case when 4n = , and the affine functions 0 0000x and its 

complement 0xFFFF .  Consider a function 0 3 7f xC D= .  Its nonlinearity with respect 

to 0 0000x  is 10, and its nonlinearity with respect to 0xFFFF is 6.  Recalling that there 

are 16 bits in each function on four variables, and given the affine function 0 0000x , we 

can determine the nonlinearity of its complement affine function, 0xFFFF , by 

subtracting its nonlinearity from 16.  For this case, 16 10 6− = .  In general, the below 

formula can be utilized to determine the minimum nonlinearity, minNL , of a function 

given the NL  one of the affine functions. 

1
min min( , 2 )nNL NL NL+= −  

Through this calculation, the following effects are observed on the circuitry 

required to implement the algorithm.  The number of exclusive OR gates required is 

reduced by ½, along with the number of ones count calculations.  However, the number 

of minimization calculations required is constant, because an additional minimization is 

implemented with the aforementioned subtraction.  2n  subtraction units must be added to 

the minNL  calculation.  However, the complexity of that operation is insignificant 

compared to the required circuitry to implement the ones count algorithm for the affine 

functions not directly tested. 

D. SUMMARY 

This chapter describes bent functions, and introduces their various properties.  It 

is through application of these properties that locating bent functions is possible, given 

their rarity.  The next chapter discusses genetic algorithms in preparation for how to 

locate bent functions. 
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III. GENETIC ALGORITHMS 

A. BACKGROUND 

Genetic algorithms have their basis by what is seen in nature.  The three main 

processes that will be discussed are survival of the fittest, crossover and mutation.  

Survival of the fittest is similar to the idea that the stronger animals in a herd are more 

likely to live and go on to produce children for the next generation.  Crossover is based 

on the possibility that if two parents have desirable traits, their children may have a 

combination of those desirable traits.  Finally, mutation is the idea that a change in a gene 

might make the animal more resilient for its environment. 

1. Definitions 

a. Chromosome, Element or Member  

A potential solution to a problem is encoded as a string and is referred to 

as the chromosome.  Strings can be any combination of characters, but this thesis will 

only consider the case of binary digits.  A chromosome may also be referred to as an 

element. 

b. Gene 

In this thesis, a gene is each character of the chromosome. 

c. Value 

The value is a numerical representation of the chromosome.  This can be 

created in any number of methods.  One common method is to directly convert the 

chromosome into its integer representation.  In a genetic algorithm involving 

trigonometric functions, for example, the value could represent some fraction between 

π−  and π . 
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d. Fitness Function 

The fitness function is a function that converts the value into a fitness 

value. 

e. Fitness Value 

The fitness value is a number that describes how close the chromosome is 

to the optimal solution.  The solution could be a maximum, minimum, local maxima or 

local minima, depending on the problem being solved.  Identifying a local maxima or 

minima is of interest when utilizing a GA in a cost savings problem. 

f. Population 

The population is a group of elements that exist within the genetic 

algorithm. 

g. Generation 

Genetic algorithms operate iteratively.  Each iteration is referred to as a 

generation.  Generally, the population at the start of a generation is the population at the 

end of the previous generation.  For the case of the first generation, the population is 

randomly generated. 

h. Survival of the Fittest 

Survival of the fittest is a process by which chromosomes are selected by 

their fitness value.  During this process, some elements are removed from the population.  

This is analogous to nature in that the weaker species die off. 

i. Crossover 

Crossover is the process by which two elements that were selected during 

survival of the fittest combine to produce two new elements.  The combination occurs by 

randomly picking a gene position.  All of the genes to the left of this gene in chromosome 



 19

a  are combined with all of the genes to the right of the same position in chromosome b  

to create 'a .  This process repeats to create 'b  with the unused portions of a  and b .  

This is analogous to nature in that two parents with desirable characteristics might go on 

to produce children that also have desirable characteristics. 

j. Selection 

There are several ways to determine which of the strings are selected for 

crossover.  One method is to only take the elements with the best fitness values.  

Unfortunately this has the effect of removing some chromosomes from the solution pool 

that might actually be needed to arrive at the optimal solution.  This can be countered 

through the use of the “roulette wheel” algorithm which assures that all elements of the 

population have at least a small chance of being selected. 

k. Mutation 

Mutation is the process by which the genes of a single element may be 

changed by a random process.  This is analogous in nature to an event causing a gene to 

change in an animal thus making it more suited for survival.  An example in the 

following section demonstrates the need to implement mutation. 

l. String Generation 

In a GA, several different chromosomes exist at one time.  This collection 

is referred to as the population.  The implementation of the GA used in this thesis has a 

population of 16, based on the number of items that can easily be sorted with the Batcher 

sort.  Initially, the population is created through a random string generator.  Once this has 

been accomplished, each of the strings is evaluated with the fitness function.  The results 

of these calculations are then sorted from the highest fitness value to the lowest.  This 

ordering is then used to help determine which of the strings will be selected for crossover.  

As such, this implements the concept of “survival of the fittest”. 
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2. Example of a Genetic Algorithm 

The following discussion on the implementation of genetic algorithms is based on 

GAs taken from [4].  In order to solve a program using GAs, the potential solution must 

first be encoded as a chromosome.  Consider a problem of finding the maximum value of 
2( )f x x=  for 0 4,095x≤ ≤ .  Assume x  is realized as a 12-bit binary number.  Its value 

is directly derived by converting the chromosome into an integer.  Its fitness function is 

simply the square of its value.  Thus, the higher the fitness function result, the closer to 

the solution you are.  Obviously, the best solution to this problem is the string with 12 

ones in it.  Figure 9 shows the processes by which the GA operates.  Finally, the example 

will not implement mutation, and while doing so demonstrates its need in order to 

achieve the maximum. 

String 
creation

Generation 
start

Survival of 
the fittest Crossover Mutation Generation 

endFitness

 

Figure 9  GA algorithm 

The GA starts with the creation of random strings, which represent each member 

in the population.  Each of the elements then has their values and fitness values calculated 

as shown in Table 5. 
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Member Chromosome Value Fitness value 

1 110101100100 3,428 11,751,184 

2 010100010111 1,303 1,697,809 

3 101111101110 3,054 9,326,916 

4 010100001100 1,292 1,669,264 

5 011101011101 1,885 3,553,225 

6 101101001001 2,889 8,346,321 

7 101011011010 2,778 7,717,284 

8 010011010101 1,237 1,530,169 

Table 5.   Start of 1st generation, From [4] 

Initially, the population consists of the 8 randomly generated chromosomes.  

Through survival of the fittest, members 1, 3, 6 and 7 are chosen, since they have the 

highest fitness value.  Members 1 and 3 are then chosen randomly to crossover at the 

second bit from the left, while 6 and 7 crossover at the 6th bit.  These positions are 

marked in the following table with a “/” as shown in Table 6. 
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Member Chromosome Value Fitness value 

1 11 / 0101100100 3,428 11,751,184 

2 10 / 1111101110 3,054 9,326,916 

3 101101 / 001001 2,889 8,346,321 

4 101011 / 011010 2,778 7,717,284 

5 111111101110 4,078 16,630,084 

6 100101100100 2,404 5,779,216 

7 101101011010 2,906 8,444,836 

8 101011001001 2,761 7,623,121 

Table 6.   Start of 2nd generation, From [4] 

By applying only survival of the fittest to the start of the 2nd generation, the 

following table is constructed.  In Table 7, it can be seen that the least significant bit in all 

of the chromosomes is zero.  As previously mentioned, the maximum value for this GA is 

a string with all ones.  Thus, regardless of where crossover is performed, the least 

significant bit in each chromosome will remain zero preventing the maximum from being 

achieved.  In order to prevent this from happening, mutation is necessary. 

 

Member Chromosome Value Fitness value 

1 110101100100 3,428 11,751,184 

2 101111101110 3,054 9,326,916 

3 111111101110 4,078 16,630,084 

4 101101011010 2,906 8,444,836 

Table 7.   After survival of the fittest, 2nd generation, From [4] 
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3. Advanced Operations 

a. Selection Methods 

Previously, when parents were selected for crossover, they were chosen 

only by their fitness value.  This prevents good genes that exist in chromosomes with a 

poor fitness value from propagating themselves into later generations.  By providing a 

detailed selection method, a means will exist that makes it possible for good genes in bad 

chromosomes to propagate. 

The roulette wheel algorithm is a process by which any of the 

chromosomes may be selected for crossover.  It is based on an idea that the chromosomes 

are chosen with a probability that depends on their fitness value.  Additionally, it allows 

for chromosomes with poor fitness values to be selected, albeit considerably less 

frequently. 

It begins by determining the sum of all of the fitness values, which are 

assumed to be non-negative.  Next, a random number is generated that is between 0 and 

the sum of the fitness values.  Next, a running total is initialized to 0, and each member of 

the population has its fitness value added to it.  The fitness values of subsequent members 

of the population are added to the total until the running total is equal to or greater than a 

randomly generated number.  The last added chromosome is then selected for crossover.  

This process continues until enough chromosomes have been selected to cause the 

population to be filled. 

b. Elitism 

The roulette wheel provides an approach that ensures that any of the 

chromosomes has the opportunity to reproduce and be part of the next generation.  The 

side effect of this is that sometimes an ideal solution is removed from the population.  

Elitism is the concept that prevents this from happening.  It allows certain solutions 

which meet specified criteria to remain in the population.  This process overcomes its not 

being selected for crossover, or mutation changing a gene [4]. 
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c. Selective Crossover 

As previously discussed, one step in crossover is to randomly select a 

point at which to perform crossover.  Consider the traveling salesman problem in which a 

salesman needs to travel through a series of cities in the shortest possible trip.  Suppose 

that there are six cities that need to be visited, named a, b, c, d, e and f.  The chromosome 

is composed of the order in which the cities are visited.  Thus, two possible chromosomes 

would be abcdef  and debcfa .  If these two chromosomes were crossed in between the 

third and fourth genes, the resulting chromosomes are abccfa  and .debdef   In each of 

these cases, two cities are visited twice during the tour, and neither is a solution to the 

problem.  Because of this issue, additional care should be taken when performing 

crossover to ensure that the resulting chromosomes are valid solutions [4]. 

B. IMPLEMENTATION ON THE SRC-6 

The specifics of the problem described in this section deal with a GA that solves a 

packing problem.  Constructing a ROTS function, that might be bent, can be viewed as 

this packing problem.  The goal of this packing problem is to find a combination of 

objects that weigh a total of 28 pounds.  There are four types of items to be packed, 9 

items weighing 6 pounds, 2 at 3 pounds, 1 at 2 pounds and 2 at 1 pound.  This results in a 

chromosome that can be described with 14 binary digits. 

Note that we can divide this problem into two subproblems.  The first subproblem 

is to create a subtotal of 4 pounds.  This can come from two possibilities.  The first is that 

exactly one 3 pound object and one 1 pound object are chosen.  The other possibility is 

that the 2 pound and both 1 pound objects are chosen.  The other subproblem is to create 

a subtotal of 24 pounds.  There are also two ways to do this—four 6 pound, or three 6 

pound and both 3 pound objects.  In the latter case, this prohibits the use of the three 

pound and one pound objects to create 4 pound subtotal.  This process describes the 

fitness function.  Each subproblem contributes a score of 120 to the fitness value, thus 

resulting in an optimal fitness value of 240.  All other combinations of selected objects 

result in a fitness value of less than 240.  For example, consider three chromosomes that 
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contain only 6 pound objects.  The first, second and third chromosomes contain three, 

four and five 6 pound objects respectively.  Since the first and the last chromosomes do 

not have the required number of 6 pound objects, their fitness sub-value would be 90.  

The second chromosome, which contains the correct number of 6 pound objects, would 

thus have a fitness sub-value of 120.  This process holds true for all combinations of 

genes, and will not be discussed further. 

Figure 10 shows the data flow path for the GA and the elements described in the 

previous section on GA are implemented.  The sorting function is the method used 

utilized to facilitate survival of the fittest. 

 

Figure 10  GA implementation organization 

1. Generation Creation 

Generation creation includes several processes.  There are three primary 

functions.  The first is the construction of new chromosomes from pseudo-random 

numbers.  Second is the calculation of the fitness value for each of the chromosomes.  

Finally, the third process is ensuring genetic diversity. 

a. Generation Creation 

Generation creating is achieved through the circuit in Figure 11.  This 

circuit is representative of how each of the 16 different chromosomes is created for the 
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GA.  The number of chromosomes is based on the ability to apply the Batcher sort to 

them.  A larger population is possible if the Batcher sorting module is expanded to 

accommodate the population.  Furthermore, it shows how the clear unit introduces new 

strings into the population.  A linear feedback shift register (LFSR) initializes the 

population with pseudo-random chromosome strings.  The LFSRs are initialized through 

a clear signal generated during the first generation.  Additionally, for each position in the 

population, the corresponding chromosome from the previous generation has its fitness 

value determined.  Once the fitness value is created, it is appended onto its chromosome’s 

associated bit string. 

 

Figure 11  Generation creation 

b. Compare and Clear Unit 

The compare and clear unit evaluates the previous generation fitness 

function against a user-specified constant, which is capable of being specified at the 

keyboard.  It serves to replace (clear) the chromosome from the previous generation, if it 

does not reach a threshold value, with a new chromosome generated by the LFSR.  This 

process helps the implementation of the survival of the fittest concept previously 

discussed.  The CLEAR signal that is generated during the first generation is also used by 
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this unit causing string initialization when the GA starts.  Finally, it is also capable of 

generating additional clear signals can be generated through the half-life and Order 67 

circuits. 

c. Half-life 

Half-life operates on the idea that, on each generation, the chromosome at 

a particular element position is loaded into successive registers.  If those registers contain 

the same value over 3 generations, a clear signal is generated forcing a new chromosome 

into that position in the generation.  The “3 generations rule” was arbitrarily chosen to 

allow sufficient time for fit chromosomes to crossover and propagate throughout the 

population.  This implementation is shown in Figure 12. 

 

Figure 12  Half-life circuit 

d. Order 67 

Order 67 is based on the idea that if adjacent members in the top four 

chromosomes in the population are the same (clones), there is a lack of diversity, and 

thus, a clear signal should to be generated in order to replace an old chromosome by a 

new one.  This is of concern due to the small population size.  This is implemented 

through a set of simple comparison circuits whose output drives an OR gate that provides 

the CLEAR signal as shown in Figure 13. 
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Figure 13  Order 67 

e. String Generation 

The circuit in Figure 14 is an example of a general purpose LFSR that was 

used in EC4830 from the course notes, and from an exam question.  Its primary 

advantage is that it can produce a maximal run sequence provided the correct tap 

positions.  The number of different outputs that an LFSR can produce is dependent on its 

tap positions.  Since an LFSR requires at least 1 bit to be one at all times during its 

operation, the maximal run of an n  bit LFSR is 2 1n − . 

 

Figure 14  General case LFSR 

The code below shows how the LFSR is parameterized.  The parameter n 

determines the number of bits in the shift register.  The tap parameters allow for up to 4 

taps, dependant on the particular LFSR being implemented.  The tap position came from 
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a predetermined table [17].  The module that instantiates the LFSR module specifies the 

tap parameters.  Therefore, tap parameters are not shown in this section of code.  When 

implemented, the tap positions were at 13, 4, 2 and 0.  Figure 15 is the Verilog code that 

was written to realize the general case LFSR shown in Figure 14. 

 

Figure 15  General case LFSR Verilog code 

Figure 16 shows the code that is necessary to instantiate the LFSRs.  Since 

the LFSR needs to retain its state from one cycle to the next, it uses the VALID and ITER 

control signals to allow the LFSR to only shift state once per call to the macro.  The 

inputs to the macros allow for different random number seeds to be specified from 

main.c. 
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Figure 16  LFSR instantiation code 

f. Numerical Representation 

As previously mentioned, there are 14 genes in each chromosome for this 

GA.  The genes are organized in the chromosome such that genes representing an object 

with the same weight are adjacent to one another.  Table 8 shows an example of the 

layout of the chromosome’s genes with respect to its weight. 

Bit 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Weight 6 6 6 6 6 6 6 6 6 3 3 2 1 1 

Table 8.   Chromosome format 
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g. Fitness Function 

The fitness function was described briefly in the introduction to this 

section.  The flow chart in Figure 17 is representative of its implementation in Verilog.  

The figure refers to lookup tables that will not be discussed in detail.  The basis for the 

tables is on how much of each of the fitness sub-problems has been correctly solved.  The 

maximum fitness is 240 and the minimum is 0.  The maximum is based on each of the 

sub-problems receiving a fitness sub-value of 120.  The width of the fitness value is 8 

bits. 

Are there 3 6s? Use table 1YES

Are there 4 6s? YES

Count 6s, 
3s, 2s and 

1s

Are there 2 1s? Use table 2YES

Use table 3

Use table 4
 

Figure 17  Fitness function flowchart 

2. Sorting 

The need to sort the fitness values in the population is complicated by two factors.  

When the fitness values are sorted, their corresponding chromosomes must also be 

swapped.  If this does not happen, the fitness values would lose their meaning.  The 
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second factor is based on the nature of operating the GA on an FPGA – that is the need to 

sort the chromosomes in hardware.  This is why a parallel sort, such as the Batcher sort, 

was chosen [1].   Furthermore, because it is implemented on specialized hardware, an 

FPGA, it is able to take full advantage of the parallelism of the Batcher sort. 

Figure 18 is taken from [9].  Each horizontal line represents an element in the 

population.  The vertical arrows represent a comparison and swap, when required, 

between the two elements.  The well-trained eye will notice the symmetry involved in 

this sort.  Simply put, sorting 16 elements first requires the sorting of two sets of 8 

elements and then a merging of the two sets.  Likewise, sorting 8 elements first requires 

sorting two sets of 4 elements, and so forth.  Of particular concern is ensuring that all 

paths through the sorting network have the same pipeline length.  This is easily seen on 

element e0.  After the two 8 element sets are sorted either e0 or e8 is the largest.  Once 

they are compared, and swapped if required, no further comparisons need to be made 

with e0.  Since, after each comparison and swap is made, the resultant values are loaded 

into registers, those elements not compared in a clock cycle must also be loaded into 

registers to ensure all data pipelines are of equal length.  There are 4 comparisons in the 

shortest path, and 10 comparisons in the longest path. 

 

Figure 18  16 element Batcher sort, From [9] 
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Each arrow in Figure 18 is realized by the sorting element shown in Figure 19.  

As previously mentioned, it is important to maintain the relationship between the 

chromosome and its fitness value when the fitness value is sorted.  The comparison 

between the bits representing the fitness values determines whether or not a swap will be 

made. 

 

Figure 19  Swapping element for sorting 

3. Crossover and Mutation 

There are two main parts to the crossover and mutation section, namely crossover 

and mutation.  There is an additional helper module that provides a scalable means to 

increment the addresses of a ROM. 

a. ROM Address Control 

Due to the use of several ROMs in this GA, a common circuit was created 

to control accessing their elements and is shown in Figure 20.  This allows easily scaling 

the GA to allow ROMs containing more words.  The first element is an adder, which 

merely adds 1 to the previously used address.  The multiplexer is controlled by the 

CLEAR signal that is generated during the first generation.  When it is high, the output of 
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the multiplexer is 0, thus providing a means to initialize the address register.  As 

previously mentioned, the address register provides the adder with the address to be 

incremented, and which value from the ROM that is to be accessed. 

 

Figure 20  ROM address control 

b. Crossover 

As previously mentioned, the need to select members of the population for 

crossover is essential for proper operation of the GA.  Although the roulette wheel 

method provides for a good way to select parents, it is difficult to implement in the 

constant time needed for this pipelined problem.  Furthermore, the need to generate 

random numbers across a range that is unspecified until all strings have been created is 

difficult, if not impossible, to accomplish in Verilog.  In order to combat this, a ROM was 

created that picked which elements would crossover.  This was achieved by creating a 

C++ program that generated 32-bit words.  These words consist of 8 nibbles, with each 

nibble representing which one of the 16 elements in the population is selected for 

crossover.  The selection probability can be changed to whatever is desired for 

experimentation. 

The roulette wheel is based on the desire that each element of the 

population has a chance at being selected for crossover.  The sum of all of the fitness 

values is first determined.  Next a random number is generated between the 0 and this 

sum.  A running total is next initialized to zero.  The fitness value of each of the elements  
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is added to the running total until the running total meets or exceeds the random number 

generated.  When this happens, the last element added to the running total is selected for 

crossover. 

The criterion for the formula that was implemented was to provide a rough 

approximation of the roulette wheel method, albeit not at the same proportions as 

described by the roulette wheel method.  At the output of the sorting circuit, the elements 

are sorted from most fit to least fit.  They are then assigned a name, with 0 indicating the 

best fitness value, and 15 the worst.  A list was created from which each element is 

selected.  The composition of the list is initially 16 0’s, 15 1’s, …, and 1 15.  This 

distribution allows all elements to be selected for crossover, while favoring those 

elements with the best fitness values.  Initially, the probability that the best fitness value 

is selected for crossover is 11.7%.  Likewise the second best and worst fitness values 

have a probability of 11.0% and 0.7%, respectively.  The elements of the list are then 

shuffled and the first element is selected as the first nibble in the word that was being 

stored in the ROM.  The list is then parsed removing all copies of the element that was 

just selected.  Thus, if the fittest element is selected on the first choice, the second fittest 

element now has a probability of 12.5% of being selected, while the worst fit element has 

a probability of 0.8%.  Generally, GA implementations allow an element to be selected 

for crossover multiple times.  However, due to the small population size, this 

implementation removes elements selected for crossover to help force genetic diversity.  

This process continues until eight elements are selected.  The remainder of the C++ 

program creates the structure that wraps the ROM values with the necessary Verilog code 

to facilitate its instantiation.  An example of one word that would be stored in this ROM 

is 32’b0000_0001_0011_0010_1000_0110_0100_1110.  When this ROM is read, 

elements 0, 1, 3, 2, 8, 6, 4 and 14 would be selected for crossover. 

All crossover operations are contained within the crossover module.  It 

consists of a crossover ROM and 4 crossover units.  The ROM provides a control signal 

to the two multiplexers in the crossover units directing which elements will be selected 

for crossover.  The crossover units process the selected elements to create the children.  A 

crossover module is shown in Figure 21. 
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Figure 21  Crossover module 

Since crossover and mutation destroy the fitness value of the 

chromosomes, the bits representing the fitness value are discarded.  Each crossover unit 

consists of 2 16-to-1 multiplexers and a bit swapper module.  Each of the multiplexers is 

controlled by one of the nibbles produced by the previously mentioned ROM.  The output 

of these multiplexers is then applied to the bit swapping module as shown in Figure 22. 
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Figure 22  Crossover unit 

The bit swapping module consists of fourteen 2 input multiplexers.  Each 

multiplexer receives the same control signal, the crossover code; however, the inputs are 

reversed in one of multiplexers as shown in Figure 23.  This creates a 14 bit swapping 

circuit where each bit is swapped based on its associated value in the crossover code (the 

control signal for the multiplexers that perform crossover).  This is the same basic idea 

that is used in the swapper elements for the sorting circuit. 
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Figure 23  1 bit crossover circuit 

As previously mentioned, care should be taken when choosing the bit 

position where crossover will occur.  Since the fitness value is composed of two 

subvalues, the decision was made to perform crossover at the boundary between the 

objects with a weight of 6 pounds and those of 3 pounds.  Consider two elements with 

relatively high fitness values.  One could meet the criteria of having four 6 pound objects 

selected, and the other chromosome meets the criteria of having a combination of objects 

selected that total 4 pounds.  Then, these two elements crossover at the aforementioned 

boundary, one of their children would have the optimal solution.  In order to provide 

greater flexibility, and to demonstrate the effects of choosing a crossover point, the 

crossover code is capable of being specified by the user at run time. 
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c. Mutation 

Although it was previously shown that mutation is essential to GAs, it is 

nonetheless a rare occurrence.  Since mutation is essentially the inversion of a bit, this is 

most easily accomplished through an exclusive OR gate.  In this implementation of the 

GA, the frequency of mutation is composed of two factors, how often a mutation might 

take place, and how likely it is that each individual bit will mutate.  The probability of 

mutation is usually on the order of 1 bit out of a 1,000; however, like all aspects of the 

GA, each of the parameters is very dependent on the problem [4].  Since this research 

does not expect mutation to play a large role due to the design of the chromosome and 

fitness function, mutation is implemented to demonstrate proof of concept.  For example, 

suppose that there is a 1% chance that a mutation will take place during a generation.  For 

each time that a mutation takes place, each bit has a certain probability, for example 10%, 

that it will mutate.  This means that a mutation might be “scheduled” to take place in 

which no mutation actually occurs. 

A mutation string could be shown to be the 14-bit string that represents 

which bits will be inverted.  Because of the difficulties that are involved in making these 

determinations in Verilog, these mutation strings are most easily stored in a ROM.  For 

each generation in which mutation does not take place, the 14-bit string is 0.  This implies 

that one could have 14 100 1,400x =  consecutive zeroes before the occurrence of a one.  

This means that the mutation ROM is a good candidate for compression. 

The compression for mutation was decided to be as simple as possible to 

provide at least the proof of concept.  It was then decided to create the mutation string as 

follows:  7-bits of zero run length, and 14-bits of mutation code and 4-bits of element 

selection.  The seven bit length is based on a given probability that there is a 1% chance 

that mutation will occur during a generation.  This means that, over 128 generations, it is 

likely that a mutation will occur.  However, since this is not guaranteed, the exception to 

this case will be discussed later. 

Again, the ROM is generated as Verilog code using a C++ program.  

Random numbers are generated with the specification that 1% of the strings will mutate.  
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For each bit, there is a 10% chance that it will mutate, which is represented by encoding a 

one.  In the cases in which 128 generations pass without a mutation, the mutation code is 

automatically created as a 14-bit 0 vector.  Finally, the 4 bits to select which element of 

the population is to be mutated are randomly created in the C++ program. 

Figure 24 shows the operation of the mutation circuit.  It consists of four 

main parts.  Starting from the right, a multiplexer that is controlled by how many 

generations have passed since the last mutation.  If the GA is ready to mutate, then its 

output is the mutation code and element selection from the ROM; otherwise it is zero.  

Next is the mutation ROM.  The second element is an incrementer that controls the 

address lines for the ROM.  The first element is another incrementer that counts the 

number of generations since the last mutation.  It compares that number with the zero run 

length value stored in the ROM, and generates the control signal for the multiplexer 

controlling the mutation code.  The remaining circuitry is provided to control 

initialization and operation of the circuit. 

 

Figure 24  Mutation ROM 

C. ADVANCED IMPLEMENTATION ISSUES 

1. Circuit Reutilization 

One of the key elements to the GA is the fitness function.  The current 

implementation of the GA includes 16 elements.  Each of these elements requires two 
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instances of the fitness function.  The first performs the calculation of the fitness value 

from the previous generation, and the fitness for the value from the LFSR.  This is made 

possible due to the small size of the fitness function.  Unfortunately, if the fitness 

function was chosen as the nonlinearity calculation, thus allowing searching for bent 

functions over all of the search space of 6n = , the available resources on the FPGA 

would be quickly exhausted.  Table 9 shows the utilizations for two instances and eight 

instances of the 6n =  nonlinearity calculation.  Of further clarification, no other circuitry 

is involved with these utilizations. 

 2 calculations 8 calculations 

Number of Slice Flip Flops 12% 33% 

Number of 4 input LUTs 19% 70% 

Number of occupied Slice 28% 94% 

Freq 100.1 MHz 100.0 MHz 

Table 9.   FPGA utilization 

Because of the excessive utilization of the FPGA resources, it is necessary to 

efficiently use the available resources.  There are two methods for this.  The first is to 

spread the circuitry over several FPGAs, or through multiple executions, reprogramming 

the FPGA during execution.  For example, moving 128 bits between the macro and 

subr.mc requires using two 64-bit variables.  Unfortunately, the current version of the 

FPGA C compiler does not provide an efficient mechanism to move large amounts of 

data between the Verilog module and the C code on the FPGA.  This is problematic, 

since for each 64 bits, or fraction of, one variable must be used to pass the data between 

the module and the C code, and this must be done for all of the 16 elements.  Thus, in 

order to only determine the nonlinearity of one function on 10n = , 16 variables are 

required to be passed to the macro. 

This implies that it might be better to reuse the circuitry that is already laid down 

on the FPGA.  What this means, in the case of the fitness function, is to provide a state 

machine that will load a specified register on each clock cycle.  Figure 25 demonstrates 
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how this can be accomplished.  In this case, the fitness function is substituted by a shift 

register to show how the different registers can be loaded with an expected value on each 

clock cycle. 

 

Figure 25  Circuit reutilization 

This circuit operates by three main processes.  The moore34 module is a state 

machine.  Its output controls the 4 to 16 decoder with enable circuit.  The decoder circuit 

operates as a one hot decoder, if its enable bit is set, otherwise, all of its outputs are 0.  Its 

outputs are used to enable one of 16 registers that are loaded by a common function, in 

this case a shift register.  The shift register is initialized on the CLR signal from a stateful 

macro.  A discussion of stateful macros is included in Appendix A.  The state machine 

that was previously mentioned is described in Figure 26. 
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Figure 26  Reutilization state machine 

The basic premise of the state machine can be determined by examining the bit 

code for each state as shown by the number inside each state.  The MSB is inverted and 

applied to the enable line on the decoder.  The remaining four bits are then directly 

applied to the decoder to determine which register needs to be loaded.  When the state 

machine receives its clear signal, it aligns itself such that the next transition will cause 

register 20000 to be loaded.  Each successive register is then loaded until all have been 

loaded.  The machine then loops until the next CLEAR signal is received causing the 

machine to reset.  When this machine is implemented with an actual fitness function care 

must be taken regarding the latency of the fitness function.  Its latency must match how 

long the machine cycles in an initial delaying state until a fitness value is propagated 

through its pipeline and is ready to be loaded onto an element register. 
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2. Random Access to ROMs 

In order to provide greater variation in program execution, the aforementioned 

ROMs should not be accessed sequentially, but instead as randomly as possible.  The 

method that was tested to implement this is through a 32-bit cyclic-redundancy check 

(CRC). 

To provide another element of randomness, the value that was calculated via its 

CRC is calculated by a random number from main.c and added to a timer value from 

subr.mc.  Because accessing the timer prevents pipelining within a loop, the 

aforementioned sum is incremented during each loop iteration.  This provides a 

randomization of accessing the ROM. 

Because of the fixed width nature of the data whose CRC is being calculated, a 

table lookup CRC was implemented.  This allows calculation of the CRC one byte at a 

time, thus reducing by a factor of four the computation time when compared to a CRC 

calculation done on a bit-by-bit basis [11].  The CRC lookup table was generated by C 

code using the method described by [20].  CRC calculation was performed by unrolling a 

CRC calculation loop of 32-bits and translating the resultant C code into Verilog.  This 

circuit is realized in Figure 27. 

 

Figure 27  CRC circuit 

D. SUMMARY 

This chapter describes GAs, with a focus on how they work.  The implementation 

of a GA on the SRC-6 is also given.  The weight problem discussed in the chapter is 

fundamental to the GA that is implemented in this thesis, and will be referred to in 

subsequent chapters.  The next chapter discusses the discovery of bent functions. 
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IV. BENT FUNCTION DISCOVERY 

A. OBSERVATIONS 

1. Co-function Repetition 

An analysis of the bent functions on 4n =  suggests that co-functions might be a 

means to construct some bent functions.  When the 896 bent function on 4n =  are 

analyzed by co-function, it is revealed that there are 112 unique co-functions.  By 

definition, there are two positions where a co-function can exist, the high and the low 

position.  Each of the co-functions occurs 8 times in the high and 8 times in the low 

positions.  This same analysis was conducted on 6n =  with similar results.  In this case, 

among the 5,425,430,528 bent functions on 6 variables there are 14,054,656 unique co-

functions.  Each of the co-functions occur the same number of times in the high and low 

position. We propose the following: 

Conjecture:  All co-functions of n -variable bent functions occur the same 

number of times in the high and low position among n -variable bent functions. 

2. Index Runs 

It has been shown that there are 42,386,176 bent function A-classes on 6n =  

[12].  We have verified this on the SRC-6.  All of these bent functions were enumerated 

using the degree method described in section II.C.4.  Since there are 6 12 +  bent functions 

in each A-class for 6n = , there are a total of 5,425,430,528 6-variable bent functions.  

During this, an interesting series of observations were made.  First, it is important to 

understand how the mapping is accomplished.  The initial mapping formula is derived 

from the highest degree of a bent function is 
2
n  and is shown in Tables 10 and 11 [13]. 
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Degree 6 5 5 4 5 4 4 3 5 4 4 3 4 3 3 2 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1
ANF bit 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Index x x x x x x x 15 x x x 16 x 17 18 0 x x x 19 x 20 21 1 x 22 23 2 24 3 4 x  

Table 10.   Degree mapping, 6n = , Map A, part 1 

Degree 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0
ANF bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Index x x x 25 x 26 27 5 x 28 29 6 30 7 8 x x 31 32 9 33 10 11 x 34 12 13 x 14 x x x  

Table 11.   Degree mapping, 6n = , Map A, part2 

The first row in the tables corresponds to the degree of the function based on a bit 

being present in that position.  The second row indicates which bit is being referred to.  

The bottom row is an index to distinguish between second and third degree functions.  

For ease of reading, the second degree bits are in red, and the third degree bits are in blue.  

Those bits corresponding to degrees other than 2 and 3 are indicated by a black ‘x’. 

Looking solely at the bits corresponding for the second degree functions, we 

notice the first bit is at location 48 and the second at 40.  Their corresponding indices are 

0 and 1.  This pattern continues until the last 2nd degree function, located at bit 3, is 

assigned the index of 14.  Similarly, the 3rd degree functions begin by again starting from 

the MSB and working right.  Thus, bit 56 has index 15, and 52 has index 16. 

The following short hand is introduced to describe the mapping.  For example, in 

Tables 10 and 11, the 2nd degree functions are mapped as 3 14, 5 13, as shown by red 

circles.  Likewise, the 3rd degree functions are mapped as 7 34, 11 33, as shown by 

blue circles.  The map shown above shall be referred to as Map A.  Different patterns 

have been noticed by changing the mapping order.  For example, using the above short 

hand, a new map can be defined as 2nd: 3 34, 5 33 and 3rd: 7 19, 11 18.  This 

mapping shall be known as Map B.  Map C is described as 2nd: 3 0, 5 1 and 3rd:  

7 15, 11 16.  Map D is described, as 2nd:  3 20, 5 21 and 3rd:  7 0, 11 1.  Finally 

a random map was used.  These mappings are shown in Tables 12 through 19. 

Degree 6 5 5 4 5 4 4 3 5 4 4 3 4 3 3 2 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1
ANF bit 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Index x x x x x x x 0 x x x 1 x 2 3 20 x x x 4 x 5 6 21 x 7 8 22 9 23 24 x  

Table 12.   Degree mapping, 6n = , Map B, part 1 



 47

Degree 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0
ANF bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Index x x x 10 x 11 12 25 x 13 14 26 15 27 28 x x 16 17 29 18 30 31 x 19 32 33 x 34 x x x  

Table 13.   Degree mapping, 6n = , Map B, part 2 

Degree 6 5 5 4 5 4 4 3 5 4 4 3 4 3 3 2 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1
ANF bit 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Index x x x x x x x 34 x x x 33 x 32 31 14 x x x 30 x 29 28 13 x 27 26 12 25 11 10 x  

Table 14.   Degree mapping, 6n = , Map C, part 1 

Degree 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0
ANF bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Index x x x 24 x 23 22 9 x 21 20 8 19 7 6 x x 18 17 5 16 4 3 x 15 2 1 x 0 x x x  

Table 15.   Degree mapping, 6n = , Map C, part 2 

Degree 6 5 5 4 5 4 4 3 5 4 4 3 4 3 3 2 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1
ANF bit 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Index x x x x x x x 19 x x x 18 x 17 16 34 x x x 15 x 14 13 33 x 12 11 32 10 31 30 x  

Table 16.   Degree mapping, 6n = , Map D, part 1 

Degree 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0
ANF bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Index x x x 9 x 8 7 29 x 6 5 28 4 27 26 x x 3 2 25 1 24 23 x 0 22 21 x 20 x x x  
Table 17.   Degree mapping, 6n = , Map D, part 2 

Degree 6 5 5 4 5 4 4 3 5 4 4 3 4 3 3 2 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1
ANF bit 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Index x x x x x x x 5 x x x 30 x 22 3 23 x x x 21 x 8 1 29 x 7 15 2 6 24 9 x  

Table 18.   Degree mapping, 6n = , Random Map, part 1 

Degree 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0
ANF bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Index x x x 10 x 11 13 26 x 19 27 0 20 16 17 x x 14 28 32 18 25 12 x 4 33 34 x 31 x x x  

Table 19.   Degree mapping, 6n = , Random Map, part 2 

This mapping can be extended to higher values of n  by using the following 

technique.  To construct the mapping for 7n = , the above table is duplicated and 

appended to the LSB of the original table.  The degree value for the original table is then 

incremented by one and the ANF bits are renumbered in the same manner as the original 

table, while the duplicated partition is left unchanged.  The index of a bit must be 
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renumbered to achieve unique values.  Again, since this thesis only focuses on bent 

functions of even n , the case of 7n =  is only presented as an intermediate step to 

achieve the mapping for 8n = . 

Another method that can be used to construct the table is to recognize that the 

values in the degree row correspond to the number of ones in the binary form of the ANF 

bit.  For example, 10 263 111111=  has 6 ones in it, and corresponds to a 6th degree 

function.  Likewise, 10 242 0101010=  has 3 ones in its binary representation 

corresponding to a 3rd degree function. 

As previously discussed, this method of mapping the functions by degree allows a 

search to be conducted only on those functions that can be bent.  However, as shown in 

the above table, this still produces a large search space, 352 .  We know that there are 

42,386,176 ROTS bent functions on 6n =  [12].  The SRC-6 has 6 On Board Memory 

(OBM) banks located on the MAP, each of which can pass 523,776 64-bit values 

between main.c and subr.mc.  There is not enough OBM to allow storing all of the 

indices prior to returning them to the microprocessor.  Thus, it will take main.c 14 calls to 

subr.mc in order to retrieve all of the indices representing bent functions.  The issue of 

transferring the indices is further complicated when considering the additional code 

required to distribute the indices across the six OBMs.  Although striping the data across 

multiple OBMs will make the code more efficient, a less complicated process was chosen 

to process all of the indices.  To overcome this limitation, the search space of 352  is 

broken into 512 equal parts, called partitions.  This number of partitions was chosen to 

allow a large amount of the loop to be performed on the FPGA, while still having a 

reasonable assurance the partitions produced a small enough set of bent function indices 

that they would not exceed the capacity of the OBM.  This is done by creating a loop in 

main.c which called subr.mc.  The loop is over the range of 0 to 511.  Subr.mc has its 

own loop that makes 35 9 262 / 2 2=  calls to a macro.  This macro acquires 9 bits from 

main.c (passed through subr.mc) and 26 bits from subr.mc to form a 35 bit number that 

represents the ANF of a 3rd or 2nd degree 6-variable function, whose nonlinearity is 

computed in the macro. 
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Upon initial execution of the program, and the subsequent data analysis, it was 

noticed that bent functions commonly occurred as consecutive indices of the 35 bit ANF.  

For example, suppose the index 656 is discovered to be bent.  This is to say, that when 

the number 656 is applied to the mapping tables above, the resultant ANF is a bent 

function.  The next index, 657, was also discovered to be bent.  To completely examine 

this, a program was written to analyze the indices of bent functions for those cases where 

consecutive indices yield bent functions.  These observations introduce two new terms, 

index adjacent (IA) bent functions and an IA group.  Two bent functions are IA if their 

index differs by one.  A collection of consecutive IA bent functions form an IA group.  

The length of an IA group is the number of IA bent functions in that group.  A future GA 

may take advantage of this by searching for bent functions by degrees.  In doing so, 

mutation could be implemented by adding one to the index.  By doing so, on a bent 

function, it is possible that the resulting function will also be bent. 

Figures 28 and 29 and Table 20 are produced through the analysis of Map A.  

From these figures and table, we can make some interesting observations.  First, note that 

there are no IA bent functions in partitions above 31.  Figure 29 shows how the IA groups 

are distributed among the 512 partitions.  For example, Figure 28 shows that 123,045 

bent functions occur in Partition #0, the first partition.  Finally, Table 20 shows a table of 

the length of the IA groups.  Second, which only holds true for this experiment, is that all 

runs exist in the pattern of 2 1,1 4n n− ≤ ≤ .  Figures 30 through 35 and Tables 21 through 

23 show the corresponding representations for Maps B, C and D. 
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Figure 29  IA groups, Map A 
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Group 
Length

Frequency of 
Group Length

3 50736
7 4704

15 1568  

Table 20.   Frequency of group length in all partitions, Map A, 6n =  
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Figure 30  IA bent functions, Map B 
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Figure 31  IA groups, Map B 
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Group 
Length

Frequency 
of Group 
Length

2 254
3 14268
4 4
5 32  

Table 21.   Frequency of group length in all partitions, Map B, 6n =  

IA Bent Functions, Map C
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Figure 32  IA bent functions, Map C 
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IA Groups, Map C
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Figure 33  IA groups, Map C 

Group 
Length

Frequency 
of Group 
Length

2 528
3 33824
4 48
5 96
7 8832

15 720
31 48  

Table 22.   Frequency of group length in all partitions, Map C, 6n =  
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IA Bent Functions, Map D
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Figure 34  IA bent functions, Map D 
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Figure 35  IA groups, Map D 
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Group 
Length

Frequency 
of Group 
Length

2 161
3 17484
4 4
7 296  

Table 23.   Frequency of group length in all partitions, Map D, 6n =  

More interesting results are obtained through a random process.  A C++ program 

was written that takes the bits that are mapped to an index and puts them into a data 

structure.  The ordering of the elements in the data structure is then shuffled.  The first 

element is assigned the next sequential index, and then removed from the data structure.  

This process continues until the data structure is empty.  The Figures 36 and 37 and Table 

24 show the distribution of the IA bent functions groups and their corresponding lengths. 

These results show several things of interest.  First, is that each partition run has 

at least one IA bent function group.  Closer analysis shows that the minimum number of 

IA groups in a partition run is 8.  In all of the other maps, at least one partition has no IA 

groups.  The other item of interest is that all IA groups have a length of either 2 or 3. 

IA Bent Functions, Random Map
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Figure 36  IA bent functions, Random Map 
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IA Groups, Random Map
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Figure 37  IA groups, Random Map 

Group 
Length

Frequency 
of Group 
Length

2 26254
3 794  

Table 24.   Frequency of group length in all partitions, Random Map, 6n =  

An analysis of this data yields two conclusions.  The first is that a future GA may 

be able to incorporate this process in finding bent functions.  Suppose the chromosome is 

the random index mapping to the ANF representation of a function.  If mutation is 

defined as the addition of a bit to this index, it is possible that one bent function could 

mutate into another bent function.  Additionally, it may be practical to use the random 

index map on the index mapper in order to find a bent function on 10n = . 

Based on the figures and tables above, the following term is introduced: 

##
#

partitions with IAbent functionsIAconcentration of IA groups x
partitions

=  
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Table 25 shows that the IA concentration is highest for the random map.  This is of 

interest on how to choose the mapping for a GA that implements a function’s ANF as a 

chromosome.  If mutation is implemented as adding 1 to the index, the mutated 

chromosome of a bent function may also be bent. 

IA concentration
Map A 2,004.19
Map B 9,070.32
Map C 2,067.00
Map D 15,701.88
Random 27,048.00  

Table 25.   IA concentration on 6n =  

Figures 38 to 42 show the bent function distribution per partition for the five 

different maps use.  The first item of note is in Figures 38 and 40.  In each of those tests, 

the first partition contains considerably more bent functions than the others.  The second 

item is visible in the figures, and verified in Table 26.  Table 26 shows the standard 

deviation of the number of bent functions per partition.  The random distribution shows 

that it may be more practical to find bent functions using the random map when 

examining problems with more variables.  This is based on the observation that as the 

number of variables goes up; the scarcity of bent functions goes up even more.  It is 

proposed that since the random map has the lowest standard deviation, the existence of a 

bent function in a partition for 8n =  or 10n =  is more probable.  
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Bent Function Distribution, Map A
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Figure 38  Bent function distribution, Map A 

Bent Function Distribution, Map B
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Figure 39  Bent function distribution Map B 
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Bent Function Distribution, Map C
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Figure 40  Bent function distribution, Map C 

Bent Function Distribution, Map D
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Figure 41  Bent function distribution, Map D 
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Bent Function Distribution, Random Map
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Figure 42  Bent function distribution, Random Map 

Standard 
deviation

Map A 22,204.96
Map B 19,339.71
Map C 22,204.96
Map D 17,993.37
Random 13,530.55  

Table 26.   Bent function standard deviation per partition 

B. BITSTUFFING 

From the weight property of bent functions, we know that a bent function has one 

of two predetermined number of ones in it, for a given number of variables.  Because of 

this, we can construct a function with the appropriate number of ones in it, with the 

miniscule hope that it is bent.  This process shall be known as bitstuffing.  Although there 

are several properties of bent functions, that have not been discussed, that can improve 

the probability construction of a bent function, this discussion will focus on the ROTS 

functions. 
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1. The Ones Hypothesis 

Recall that there are eight 4-variable ROTS bent functions.  Each of the eight sub-

tables of Table 27 represent all of the 4-variable bent functions that can be created from 

the 4-variable ROTS bent functions by exclusive ORing a ROTS bent function with an 

affine function.  Note that the resulting function is bent, but not necessarily ROTS.  The 

first sub column represents a function that has been determined to be bent and ROTS 

through a brute force enumeration of the search space.  The second sub column is an 

affine function.  The final sub column is the result of the exclusive ORing of the 

candidate ROTS bent function and that particular affine function. 

 

Table 27.   ROTS bent functions on 4n =  
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This implies that a sieve can be easily constructed to help search for the bent 

functions.  Furthermore, this sieve can be constructed to target ROTS bent functions.  

Suppose you have a function you would like to determine is bent.  An initial step could 

be to count the number of ones in it, and for the case of n=4, see if the answer is either 6 

or 10.  If this is not the case, then the function is not bent.  If this is the case, then it may 

be bent, but there is no guarantee that it is bent.  The remainder of this discussion will 

focus on the case of a bent function containing 6 ones. 

The goal is to determine if a ROTS function has 6 ones.  To start, the function that 

maps the rotationally symmetric index (RSI) to the truth table must be examined.  One 

lab during EC4820 involved the creation of a C program that determined the rotationally 

symmetric index function.  This paper will only focus on those results.  The below table 

demonstrates how the 6-bit RSI is mapped into a 16-bit truth table. 

To create the 16-bit number from the RSI, each of the 6-bits of the RSI is 

examined one at a time.  The RSI and the 16-bit truth table are formatted with the bits 

laid down with the 0 bit being on the right.  The value of the ith bit of the RSI is then 

mapped into the 16-bit number according to the below table.  This means that the value 

of bits 8, 4, 2 and 1 in the expanded number are the same and equal to the value of bit 1 

in the RSI. 

Next, the number of ways to create a 16-bit number from the RSI was examined.  

This was done via a histogram on the bin frequency of the RSI in an Excel spreadsheet.  

Table 28 shows these results: 
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Source bit Frequency 

0 1 

1 4 

2 4 

3 2 

4 4 

5 1 

Table 28.   RSI histogram, n=4 

In this table, a value from each of the 6-bits in the RSI is used the number of 

times listed in the frequency column.  From this, it can be shown that there are six ways 

to get a number with 6 ones.  To get a number that has 6 ones in it, each source bit must 

be set high until the frequency total is 6.  Thus, the source bit combinations that are 

required to get 6 ones is 015, 025, 045, 13, 23 and 34.  However, since there are only 4 

ROTS bent functions on 4n = , we know that 2 of them must be eliminated.  Table 29 

shows the 6 ways to get 6 ones in the 16-bit format.  The two functions that are not bent 

are highlighted in red.  Because not all functions generated through this process are 

ROTS bent function, it is only a sieve to construct ROTS bent functions. 

In Table 29, the “selected source bit” column shows which bits in the RSI must be 

high to get 6 ones in the 16-bit format.  The next 4 columns labeled 15, 11, 7 and 3 

represent each of the 4 nibbles in the 16-bit number.  Each column is labeled according to 

the MSB in each nibble.  The final column is the 16-bit hexadecimal representation of the 

number being constructed.  The bolded red numbers indicate RS functions that have 6 

ones but are not bent.  This can easily be proved by finding an affine value that, when 

exclusive ORed with the function, produces a result with less than 6 ones.  For 0 9249x , 

the affine value is 0 9669x  ( 20 9249 0 9669 0 0420 0000010000100000x x x⊕ = = ) and is 

determined through a brute force enumeration of the affine functions.  For 0 1668x , the 
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affine value is also 0 9669x  ( 20 1668 0 9669 0 8001 1000000000000001x x x⊕ = = ).  The 

bent functions are now known to be 0 536,0 6 0,0 8117 0 881x x CA x and xE  through 

enumeration. 

 Binary representation  

Selected source 

bit 15 11 7 3 
Hex format 

015 1000 0001 0001 0111 8117 

025 1001 0010 0100 1001 9249 

045 1110 1000 1000 0001 E881 

13 0000 0101 0011 0110 0536 

23 0001 0110 0110 1000 1668 

34 0110 1100 1010 0000 6CA0

Table 29.   RSI functions with 6 ones 

This same concept can be used to produce a sieve for larger cases of n.  The case 

implemented for this thesis was for n=6.  This results in a 14-bit RSI being mapped into a 

64-bit number.  The RSI mapping function has been previously discussed under the guise 

of the 28 pound packing problem discussed in III.B. 

2. Execution of a GA on 6n =  

The GA has been implemented on the SRC-6, as previously described in this 

thesis.  The results of the data trends from the SRC-6 are discussed below.  As will be 

described, different parameters of the GA were altered in order to see how the results 

varied.  However, for the sake of consistency throughout all of the experiments discussed, 

the same set of seeds is used for the LFSRs.  Additionally, all of the ROMs were 

addressed in a sequential manner, versus the CRC addressing method previously 

described. 
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The following terms will be used throughout the discussion of the GA results.  

Since the GA implements the ones’ count hypothesis, it is a sieve for bent functions.  

What that means is that a “fit” chromosome from the GA, meaning it has the maximum 

fitness value of 240, may be or may not be bent.  The term “percent fit” describes how 

many of the chromosomes out of all of the generations have a fitness of 240.  If a 

chromosome has a fitness value of 240, and its corresponding truth table is a bent 

function, then it is referred to as a “chromosome yielding a bent function”.  The “yield” is 

the percentage of all chromosomes with a fitness of 240 whose TT yields a bent function.  

Bent functions are only counted once regardless of how many times they generated 

through the chromosomes, and are thus referred to as “unique”.  Unless specified 

otherwise, the minimum fitness value to prevent chromosome replacement is 150. 

Several methods were used to implement the crosscode.  Unless stated otherwise, 

the crosscode of 0 1x F  is used.  This specifies the boundary between the bins 

corresponding to a weight of 6, and all other bins.  This is a single point crossover.  Later, 

two types of random crosscodes are tested.  The first type is one that has the crossover 

occur at one place within the chromosome.  The other type allows for multiple crossover 

points.  In all cases, the same crosscode is used for all elements in a particular generation.  

In some cases, described in detail later, each generation has its own crosscode. 

The first set of tests shows effects of changing the minimum fitness value.  There 

are essentially three interesting things to look at in the results of when the minimum 

fitness value is changed.  The first is when the minimum fitness value is 0, the GA 

behaves more like a GA in which new chromosomes are only introduced through 

crossover.  Conversely, when the minimum fitness value is 240 the GA behaves like a 

brute force search, albeit with some “genetic” aspects to the brute force.  Finally, the 

remaining interesting point is where the GA seems to change its success rate.  This first 

set of tests was run under two generation lengths, 512 and 2,000.  The former choice is 

based on 16 chromosomes per generation for 512 generations yields 8,192 chromosomes 

examined.  This is half of the total chromosomes in the entire search space.  The later 

choice is an arbitrary larger value.  Figure 43 shows the number of unique bent functions 

found, while Figure 44 shows the number of chromosomes yielding a bent function. 
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Effects of changing minimum fitness
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Figure 43  Unique bent functions 
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Figure 44  Chromosomes yielding bent functions  
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Of greatest interest here is the distinct jump in the number of chromosomes 

yielding a bent function between the minimum fitness of 120 and 150 as seen on the 512 

generation test.  This result is also shown in Figures 45 and 46, which show the percent 

fit and the yield for these tests.  Because of these results, the minimum fitness of 150 was 

chosen as the minimum fitness of subsequent testing. 

Effects of changing minimum fitness
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Figure 45  Percent fit versus minimum fitness 
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Effects of changing minimum fitness
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Figure 46  Yield versus minimum fitness 

Figures 47 and 48 show the effect of changing the crossover point on the number 

of chromosomes yielding bent functions, and also the number of unique bent functions 

located.  There are five sets of tests in this experiment, with each test running for 512 

generations.  The first test is the control test, with a crossover point of 0 1x F  as described 

with Figures 43-45.  The second test uses a multi-point crossover with code 0 0xED .  

Multi-point crossover means that instead of one point determining where the 

chromosomes are split and recombined, there are several points.  For example, the multi-

point crosscode 20 0 1110 _1101_ 0000xED =  means that the bits 4, 6, 7, 9, 10 and 11 

will crossover, where bit 0 is the LSB.  The third test is a single point crossover with 

crosscode 0 7x .  These two crosscodes were used in all generations.  The final two test 

sets each have a unique crosscode for each generation.  In the first case, the crosscode is a 

multi-point, and in the last case, it is a single point crossover.  The most obvious piece of 

information gained from this set of experiments is that, with the current design of the 

chromosome, and fitness function, the success of the GA is definitely dependant on the 
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crossover code.  This can be seen in two places.  The first is on the case where the 

minimum fitness value is 120.  By the design of the fitness function, 120 is a key point 

since it represents that 1 of the 2 subproblems has been “solved”.  The other issue is the 

randomly generated multi-point crosscode yields some interesting results when the 

minimum fitness value is 150.  The correlation between the crossover code and the 

minimum fitness value appears to be dependant on the minimum fitness value.  As it gets 

higher, different crosscodes yield better results.  This may be due to the GA starting to 

resemble a brute force attack as the minimum fitness value approaches 240. 

Effects of changing crossover point
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Figure 47  Effect on number of unique functions due to changing the crossover point 
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Effects of changing crossover point
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Figure 48  Effect on number of chromosomes yielding bent functions due to changing 
crossover point 

Figures 49 and 50 show the effect of changing the crossover point has on percent 

fitness, and the percent yield.  Overall, each of the crossover methods has a tendency to 

yield more fit chromosomes as the minimum fitness value rises.  The yield is somewhat 

affected, although the values are too small to draw any definitive conclusions, with the 

exception of a few data points that show a marked change in the performance of the 

crossover point with respect to the minimum fitness value.  The most notable points are 

shown on Figure 50.  The test single point change has its percent yield drop go from 

4.77% to 0.73% as the minimum fitness changes from 90 to 120.  On the multipoint test, 

the yield goes from 0.62% to 8.87% to 0.53% as the minimum fitness value changes from 

120 to 150 to 180. 
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Effects of changing crossover point
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Figure 49  Percent versus minimum fitness for a changing crosscode 
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Effects of changing crossover point
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Figure 50  Yield versus minimum fitness for a changing crosscode 

The final set of tests involves the effects of changing the number of generations.  

Again, the original crosscode of 0 1x F  is used.  Three cases are examined for the 

minimum fitness value.  Again, the minimum fitness is varied in increments of 30 from 0 

to 240.  Figures 51 and 52 show some interesting results.  The first is that the number of 

unique bent functions becomes saturated very quickly.  In essence, this “saturation” is 

actually a limit indicating that all of the ROTS bent functions on 6n =  that could be 

found were found.  That statement has its basis in the fact that this GA is only searching 
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for ROTS functions that have 28 ones in it.  This process will only locate half of the 

ROTS bent functions, since only half of them have 28 ones in them.  Their complements, 

however, contain the other half of the ROTS bent functions on 6n = .  This means that 

for all cases, running the GA for more than 6,000 generations does not yield any 

additional bent functions.  Prior to that threshold, there is a linear relationship between 

the number of unique bent functions and the number of generations.  The number of 

chromosome yielding bent functions behaves drastically differently, though.  As the 

number of generations increase, there is nearly a logarithmic rise in the number of 

chromosomes yielding bent functions. 
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Figure 51  Unique bent functions versus changing generations 
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Effects of changing number of generations
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Figure 52  Chromosomes yielding bent functions versus changing generations 

Figures 53 and 54 show the relationship between the percent fit and the yield.  In 

all cases for the percent fit, there is little change once 2,000 generations have elapsed.  

There is an inverse relationship between the yield of the GA and the minimum fitness 

value versus the number of generations.  For example, when the minimum fitness value is 

0, the yield grows as the number of generations grows.  The converse is true for a 

minimum fitness value of 240, as the number of generations grows, the yield diminishes.  

This is due to the fact that with a minimum fitness value of 240 the GA starts to emulate 

a brute force attack.  However, since chromosomes are eliminated through selection, and 

chromosomes that do not have a perfect fitness are also eliminated, this case actually 

behaves worse than brute force.  The yield for the minimum fitness value of 150 is 

relatively unchanged. 
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Effect of changing generations
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Figure 53  Percent fit versus number of generations 
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Figure 54  Yield versus number of generations 

Finally, a test was conducted to determine the effectiveness of crossover on 

producing bent functions.  This analysis is limited to the tests involving 512 generations.  

As more generations elapse, the LFSRs produce the set of pseudorandom numbers that 

rapidly covers the entire search space.  This can be accomplished in as little as 1,024 

generations if the LFSR seeds are strategically space, which they are not.  Regardless, it 

becomes extremely difficult to determine if a chromosome is the resultant of it being 

generated by the LFSR, or by crossover. 
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This process starts by storing all of the values that the LFSR will generate over 

512 generations into a text file.  This text file is then read, and its values are stored into a 

C++ set data structure.  This type of data structure can be viewed as a specialized vector 

in which no two elements have the same value.  It should be noted that the underlying 

data structure in a set is probably not a vector; a vector is merely mentioned due to its 

familiar nature.  Next, the chromosomes with a fitness value of 240 are loaded into a 

different set.  Each element of the first set is searched for in the second set, and removed 

if found.  The elements remaining in the second set after this process are those that must 

have been generated through crossover.  It is possible that some fit chromosomes were 

generated through crossover that were also generated by the LFSRs, and are thus being 

masked.  However, given the results of Figure 55, a sufficient number of fit 

chromosomes are being generated through crossover that further investigation on the 

success of crossover is not warranted. 

Figure 55 shows the percentage of all fit chromosomes that could not have been 

produced by the LFSRs during the run of 512 generation.  This figure shows that 

crossover is indeed being effectively used to generate fit chromosomes.  To be specific, 

fully 1
3  to 1

2  of the fit chromosomes came from crossover.  Actually, it cannot be 

determined if they came from crossover or mutation.  However, by design, mutation is 

already sufficiently rare and ineffective that its contribution can be neglected. 
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Figure 55  Fit chromosomes due to crossover 
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C. ROTS SEED ON 4n =  

To assist in reviewing the bent functions on 4n = , a computer program was 

written that serves as a filter for the bent functions.  The user is able to specify which of 

the nibbles he wishes to examine, and those bent functions that meet that requirement are 

shown.  From this, it was observed that a given co-function exits numerous times across 

all of the bent functions.  To further process this information, another program was 

written that specifically tallied all of the co-functions, and their respective frequency in 

both the high and the low position.  These results yielded an interesting observation.  

There are 112 unique co-functions on 4n = .  Each of those co-functions appears 16 

times.  From this it is hypothesized that bent functions of a certain number of variables 

can be constructed using co-functions of the same number of variables. 

After an extensive comparison of the co-functions with the affine functions, the 

following algorithm is given to find bent functions on 4n = .  It is proposed that this 

algorithm be implemented to cover larger n . 

First, all of the affine functions are loaded into a C++ set data structure.  Next, all 

of the given bent functions are loaded into a different set.  The bent functions that exist 

during the initial execution of this algorithm are known as the bent function seed.  Later 

discussion will show how ROTS bent functions are ideally suited for this process. 

The set of bent functions is parsed, with each bent functions being broken into its 

two component co-functions, with the high co-functions being logically shifted to the left 

to align the co-functions.  Each of those two co-functions are added to a co-function set.  

Additionally, the bits of each co-function are reversed, and those new values are added to 

the co-function set.  For example, suppose the set contains the co-function 

20 74 01110100x = .  The number 20 2 0010 1110x E =  is then added to the set. 

Second, a nested loop is constructed.  Each loop iterated through the entire 

co-function set.  While doing so, the current co-function from each loop is exclusive 

ORed, and the resultant value is placed in a temporary co-function set.  After the loop 

completes, the temporary co-function set is merged with the original co-function set. 
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Third, a set of proposed bent functions is produced using a manner similar to 

construction of the temporary co-function set.  Again, a nested loop is constructed with 

each loop iterating through each member of the set.  A proposed bent functions is 

constructed by assigning the co-function in the outer loop as the high co-functions and 

the inner loop as the low co-function. 

Finally, the nonlinearity of the proposed bent functions is calculated, and a new 

set of bent functions is produced.  This new set of bent functions provides the input to the 

aforementioned algorithm to again produce a set of functions to be tested for bentness.  

This process was implemented using a Linux shell script. 

Observation: 

Only two functions are required to be in the seed, provided that they are both 

ROTS and of a different A-class, in order to generate all 896 bent functions. 

This can be accomplished in two iterations of the algorithm.  Different 

combinations of seeds were constructed utilizing a ROTS bent function and a bent 

function of a different A-class.  Although the combinations were not exhaustively 

searched, it is observed that all 896 bent functions can be generated from a given pair of 

seeds.  Further iterations of the algorithm fail to produce additional bent functions. 

In a sense, this is actually a genetic algorithm, albeit with the order of genetic 

operations different from those previously discussed in this thesis.  Consider each co-

function from the bent functions as the chromosomes.  The operations of combining the 

co-functions with themselves, and the affine functions, could be viewed as a form of 

crossover.  Survival of the fittest is mimicked through the nonlinearity calculation.  When 

the nonlinearity is determined, those functions that are not bent are removed from 

consideration because they are not “fit”.  Thus, in this case, “fitness” is determined by the 

nonlinearity of the function.  In this test the mutation operation is not implemented.  Each 

iteration of the algorithm is a generation.  After a few number of generations, no 

additional information is gained. 

The nonlinearity distributions are shown in Tables 56 and 57 for 4n = .  This is to 

provide a comparison against the nonlinearity distributions of higher n . 
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Figure 56  Nonlinearity, 4n =  
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Figure 57  ROTS nonlinearity, n=4 
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D. BY DEGREE ON 6n =  

As mentioned in IV.A.2, all of the bent functions were enumerated on 6n =  from 

the set of functions with degree 3 or 2.  Figure 58 shows the graph for the nonlinearity 

distribution observed from these functions.  Figure 59 shows the nonlinearity distribution 

for ROTS functions on 6n = .  Of particular interest is that only the following 

nonlinearities were observed:  0, 8, 12, 14, 16, 18, 20, 22, 24 and 28.  The distributions 

for nonlinearities of 0, 8, 12 and 14 are 1, 11,160, 1,749,888 and 22,855,680 respectively.  

The remaining nonlinearity frequencies are so large that the previous nonlinearities are 

not noticeable in the figure.  Note that the two graphs share the same basic shape. 
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Figure 58  Nonlinearity by degree, 6n =  
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ROTS Nonlinearity, n=6

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Nonlinearity

Fr
eq

ue
nc

y

 

Figure 59  ROTS nonlinearity, 6n =  

E. ROTS ON 8n =  

The ability to conduct a nonlinearity calculation on 8n =  is hampered by the ever 

growing size of the circuitry.  In order to combat this, two optimization were made to the 

basic design for the nonlinearity calculation on 6n = .  The first was implementing the 

complement optimization described in Chapter  II.  By doing so, this reduces the number 

of nonlinearity values going into the minimization circuit by a factor of 2.  This, however, 

does not reduce the complexity of the circuitry to allow a timely compiling.  To reduce 

this complexity by another factor of 2, an additional control signal was provided to the 

macro from subr.mc.  This control signal controlled a two input multiplexer, whose 

inputs were affine functions.  To accommodate for the reduced data throughput in the 

macro, subr.mc is required to make two calls to the macro. 

Consider, for example, the need to count from 0 to 7, in binary.  The proper 

pattern would be 000, 001, 010, … 111.  Now suppose you were to count from 0 to 7 

again, however, this time you need to count each number twice.  This can easily be 
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accomplished by appending a counting bit to the original three bits.  Thus, one is 

essentially counting from 0 to 15, and using the three most significant bits to indicate the 

number that is being counted. 

A loop is normally used to provide the macro with sequential indices, or 

sequential blocks of memory containing the functions to be tested.  When the loop is 

providing indices to the macro, it can easily be doubled using the above method.  This 

allows a smaller circuit to be placed on the FPGA, albeit at the expense of a slower 

execution time.  Care must be taken when doing this on three steps.  The first is ensuring 

that the index being sent to the macro in the slowed counter.  Using the above example, 

you would need to be sending the macro 000, 001, … 111 versus 0000, 0001, … 1111.  

This can be accomplished by conducting a logical right shift by one bit.  At the same 

time, the macro also needs to receive the control signal for the multiplexer in the macro.  

This can be accomplished by using a logical AND on a counter, and applying that 

resultant to the macro.  Finally, subr.mc needs to compare the nonlinearity value from the 

most recent call to the macro, with the value from the previous call.  The lesser of the two 

values is chosen and used as the overall nonlinearity for the function under test. 

As a result of the enumeration of the 362  ROTS functions on 8n = , the following 

observations were made.  15,104 of the functions are bent, and they are equally divided 

amongst 3,776 A-classes.  That is, there are four ROTS bent functions in each of the 

3,776 A-classes.  The nonlinearity distribution of the bent functions is shown in Figure 

60.  Of the total number of ROTS functions, 52.20 10 %x −  are bent.  The distribution 

contains all nonlinearities although those below 52 and above 116 are not visible due to 

their small distribution. 
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Figure 60  ROTS nonlinearity distribution, 8n =  

F. SUMMARY 

This chapter discussed the various methods used to locate bent functions.  It also 

provides the reader with the necessary knowledge to understand the scarcity of bent 

functions, and the need to restrict the search space as much as possible. 
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V. SUMMARY 

A. BENT FUNCTIONS 

The method best used to find bent functions is based on the number of variables 

that is being examined.  Table 30 shows the scarcity of the bent function.  It introduces a 

new term called the concentration factor defined below: 

#

#

bent in search space
sizeof search spacecf total bent
total search space

=  

This value shows how changing the size of the search space, e.g. by restricting it to 

ROTS functions or through searching by degree, the concentration of bent functions 

becomes noticeably higher.  This can become a means to determine which method should 

be used to locate bent functions for a higher n . 

Entire ROTS By degree Entire ROTS By degree Entire ROTS By degree
Search space 2^16 2^6 2^6 2^64 2^14 2^35 2^256 2^36 2^154

65536 64 64 1.84467E+19 16384 34359738368 1.15792E+77 68719476736 2.2836E+46
Total search 
space 65536 65536 65536 1.84467E+19 1.84467E+19 1.84467E+19 1.15792E+77 1.15792E+77 1.15792E+77
# bent fns 896 8 28 5425430528 48 42386768 9.92706E+31 15104 1.93888E+29
As 2^x 9.807354922 3 4.807354922 32.33709048 5.584962501 25.33711063 106.2911373 13.88264305 97.2911373
fraction bent / 
search space 0.013671875 0.125 0.4375 2.94113E-10 0.002929688 0.001233617 8.57318E-46 2.19792E-07 8.49046E-18
As 2^x -6.19264508 -3 -1.19264508 -31.6629095 -8.4150375 -9.66288937 -149.708863 -22.117357 -56.7088627
fraction bent / 
total search 
space 0.013671875 0.00012207 0.000427246 2.94113E-10 2.60209E-18 2.29779E-12 8.57318E-46 1.30441E-73 1.67445E-48
As 2^x -6.19264508 -13 -11.1926451 -31.6629095 -58.4150375 -38.6628894 -149.708863 -242.117357 -158.708863
Concentration 
factor 1 9.142857143 32 1 9961088.848 4194362.581 1 2.56372E+38 9.90352E+27
As 2^x 0 3.192645078 5 0 23.24787202 22.00002015 0 127.5915058 93

n=4 n=6 n=8

 

Table 30.   Bent function scarcity, After [8] 

B. GENETIC ALGORITMS 

There is considerable potential in using GAs, and genetic based operations, in 

order to find bent functions.  The most interesting method used a ROTS seed to find bent 

functions.  When using the more traditional approach to GAs, one quarter (6 out of 24) of 

the available bent functions were located.  This is of interest considering that the GA had 
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processed a total of 77 functions, some of them repeated due to the nature of the GA, that 

were bent during this time frame.  Careful design of the GA, and crosscode selection, will 

help the GA locate bent functions more rapidly. 

C. WHY RECONFIGURABLE COMPUTING 

The primary advantage of reconfigurable computing is the ability to work in 

parallel.  Consider the sieving computation for bent functions on 6 variables.  The 

distance between each function and 128 affine functions must be computed.  This can be 

done in parallel.  If the GA is applied to a population of 16 chromosomes at one time, this 

can be considered as a parallel computation involving 16 separate processes acting 

simultaneously.  Despite the relatively few chromosomes in the population for this GA, 

the reconfigurable computer operating at 100 MHz is quickly capable of outpacing a 

general purpose computer operating at 2.8 GHz.  This can be seen in Figure 61. 

The FPGA based GA was translated into C++, and a comparison was conducted.  

The C++ code was executed on the same CPU that is connected to the FPGA, a 32-bit 2.8 

GHz Xeon processor.  The C++ implementation includes two versions.  The first does not 

include the half-life and Order 67 logic (C++ simplified), while the second version (C++ 

full) does.  The graph shows the number of CPU clock cycles required to run the GA for 

a given number of generations.  For example, the FPGA GA implementation requires 

fewer clock cycles compared to C++ full when the number of generations exceeds 

approximately 7,000.  And, it requires fewer clock cycles compared to C++ simplified 

version when the number of generations exceeds approximately 14,000. 

This result can also be seen in Figure 62, which shows the accumulated CPU 

clock cycles versus the generation.  For example, at approximately 7,000 generations and 

above, the FPGA GA requires fewer clock cycles than C++ full.  At approximately 

14,000 generations and above, the FPGA requires fewer clock cycles than C++ 

simplified.   The reason that the FPGA curve is relatively flat is because the amount of 

time it takes to run the GA is insignificant compared to the time required to execute the 

other instructions.  This is similar to the difference in time it takes to list a large amount 

of files in Linux.  For example, it takes considerably less time to list the files while 
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redirecting the output to a file than to display them to the screen.  The number of clock 

cycles in all cases is determined by using the C “clock()” library function.  Since this GA 

is able to quickly locate fit functions due to the small search space, the FPGA 

implementation of the GA may be better suited for a larger search space, meaning more 

bits in the chromosome. 
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Figure 61  Speed advantage of reconfigurable computing 
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Generations per CPU Clock Cycle
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Figure 62  Generations per CPU clock cycle 

D. MEETING GOALS 

The goal of this thesis was to determine if GAs are useful in finding bent 

functions.  This thesis shows that GAs are a useful tool to locate bent functions.  

Furthermore, it shows that other genetic processes are useful for generating bent 

functions from a given bent function.  For the first time at NPS we have enumerated all 

bent functions on 6n =  and all ROTS bent functions on 8n = .  Finally, it was discovered 

that bent functions can be discovered in groups.  This discovery may be useful in a future 

GA searching for bent functions by degree. 

E. FUTURE WORK 

Through the course of this thesis several issues were discovered that warrant 

additional research.  This includes the grouping of index adjacent bent functions and 
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generating bent functions for a ROTS seed.  Finally, many sub-programs were created 

that can be expanded and integrated to facilitate easier testing. 

1 ROTS Seed 

Additional testing should be done on the ROTS seed method of discovering bent 

functions.  The test should focus on what combinations are required to yield all bent 

functions.  Furthermore, analysis should be conducted on the mathematical properties of 

the seed functions that yield all bent functions. 

Furthermore, this experiment should be expanded to study functions of more 

variables.  It is proposed that the next case to be examined is 8n =  since all bent 

functions on 6n =  have already been enumerated in this thesis.  The addition of new A-

classes of bent functions will provide more research opportunities than revisiting 

functions of fewer variables. 

It is proposed that the ROTS seed algorithm be modified to allow searching for 

bent functions in more variables.  This can be accomplished by programming the co-

functions in a hexadecimal character string versus as an integer value.  In this method, 

co-functions can have their bits reversed by simply parsing the character string from the 

null terminating character to the first character in the string.  As each character is parsed, 

its integer-based hexadecimal value can be computed, and corresponding reversed 

hexadecimal value be determined through an array based table lookup.  Similarly, when 

two co-functions are exclusive ORed together, this can be done on a character by 

character basis of their representative hexadecimal strings.  Again, the integer based 

values can be determined from each character.  After the two values are exclusive ORed 

together, the resulting value can be used as an index into a different lookup table to yield 

the hexadecimal based character of the string.  This is all easily accomplished in C++ 

using the Standard Template Library.  Finally, the proposed bent function strings can be 

printed to a text file which can then already be read by an existing bent function 

calculator to determine the nonlinearity of the functions. 
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2. By Bitstuffing on 10n =  

It is proposed that a ROTS bent function can be created through a similar process 

to the GA process on 6n = .  For this case, there are 108 bits in the ROTS index.  Of 

these bins, 99 have a weight of 10.  Since the goal is to create a function with 496 ones in 

it, one of the primary ways to do that is to have 49 of these 99 bins selected, thus giving a 

weight of 490.  The remaining weight can then be evaluated through brute force 

manipulation of the remaining bins.  Building a ROTS index that has exactly 49 ones in it 

can be done as follows.  Create a data structure that has 99 elements in it.  Initialize 49 of 

the elements to a 1, with the remaining to 0.  Shuffle the position of the elements through 

some random process.  If this process is to be implemented in C++ with the Standard 

Template Library, the random_shuffle algorithm can be used to accomplish this.  The 

resulting list can then be converted into a couple of 64 bit numbers by iterating through 

the list and performing the appropriate bitwise operations on the required variables.  This 

99 bit value is then processed by the FPGA along with the brute force manipulation of the 

remaining bits, and the nonlinearity is computed. 

In order to perform the nonlinearity calculation on 10n = , a method similar to 

that used on 8n =  can be used.  In 8n = , which affine function that is going to be used is 

controlled by a control line to a multiplexer.  In 10n = , which has four times as many 

bits in the TT, the number of controls lines becomes three.  However, instead of a 

multiplexer being used to store the affine function values, a ROM is instantiated that 

contains all of the affine functions.  It is instantiated 128 times.  The value accessed by 

the ROM is composed of two factors.  The first is a constant corresponding to the ROM 

number.  For example, the first ROM would have seven of its address lines being tied to 

the number 0.  Likewise, the last ROM would have seven of its address lines tied to the 

number 127.  The remaining three address lines are provided from by the loop in the 

subr.mc file.  This gives the ROM the ability to access 1,024 different affine functions.  

As with the case of 8n = , a “shortcut” is used that takes into consideration the 

relationship that an affine function has with its complement on the nonlinearity of a 

function. 



 91

3. Rework on 6n =  

The fitness function should be rewritten for 6n =  to facilitate looking for GA 

chromosomes that correspond to a ROTS function that has 36 ones instead of 28.  

Another possibility is to include a version that searches for both conditions, and selects 

the best case.  This can be accomplished by first examining the flowchart created for the 

current fitness function.  The corresponding tables can be recomputed for the new set of 

circumstances that will result in correctly answering the subproblems. 

4. More Efficient Use of Memory Transfers 

In order to transfer information between the microprocessor and the FPGAs, a 

series of memory transfer protocols are used.  Currently the algorithm is only using one 

of the data paths between the two computers.  This limits the number of generations that 

can be run in one execution of the GA.  Although this is not a factor in the current GA, 

the ability to run it over more generations may become necessary in other problems.  

Furthermore, the memory transfers can be sped up in a few places by utilizing different 

striping patterns as discussed in the SRC-6 literature. 

5. Calculators 

Currently a series of calculators are used to send data from one portion of the 

computation to another.  For example, the GA is computed in one executable, and uses 

input/output redirection to send its data to a text file.  The text file is, in turn, read into a 

different file that converts the chromosome into the normal ROTS index expression, and 

then into its subsequent truth table.  Finally, another program performs the nonlinearity 

calculations on these truth tables.  This cumbersome process is primarily hampered by the 

need to read text data as a hexadecimal character string and convert it into its numerical 

value.  Furthermore, this is done in groups of eight before the data is passed to the FPGA.  

This is drastically underutilizing the amount of bandwidth that exists between the 

microprocessor and the FPGA.  The decision to do this is based on the fact that 8 copies 

of the nonlinearity calculation can be placed on the FPGA at one time.  Thus to simplify 

processing these calculations, the rest of the program was hindered. 
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These calculators can be rewritten in at least  two ways.  The first is to send more 

than 8 values to the FPGA for processing at one time.  The most desirable solution would 

be to combine all of the programs into a single project.  In this method, would be 

recommended for implementation only after all of the calculators are working 

independently.  This is based on the considerable amount of time it takes to compile each 

of the separate programs.  One variant of this would have several subr.mc files in the 

Makefile, each calling their own calculator.  Another version would incorporate all of the 

calculators into one subr.mc file, and having a control signal from main.c determine 

which calculator is to be used. 
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APPENDIX A. STATEFUL MACROS SRC-6 

Of interest in this research is the case of a “stateful” macro.  As previously 

mentioned, there are several different possible flags that can be set.  One of these flags 

makes the macro stateful.  This is the method that the SRC-6 designers created to 

implement macros that would retain their state from one iteration of a FOR loop to the 

next.  In order to prevent the macro from continuing to execute when it should not be 

executing, additional control signals are made to this macro.  The different ways to 

control these signals is beyond the scope of this research.  Only their functional result is 

of interest. 

The three control signals that must be implemented for stateful macros are 

CLEAR, VALID and ITERATION (or ITER).  The CLEAR signal would most often be 

set as a conditional expression in the macro call.  An example is when a macro is called 

for the first time.  In this case, the values in the registers should be initialized.  Thus, the 

programmer would control that through the macro call with a conditional expression such 

as: 

my_macro(times==0, in, &out); 

In this case, a FOR loop increments the variable times, and when times is 0 

(normally during the first execution of the loop), the clear signal is generated and sent to 

the macro. 

The ITER signal is used to ensure that the macro is only processing data once 

during the iteration of the FOR loop.  Various stores to memory might cause the loop to 

be “slowed down.”  Loop slow down becomes an issue when several memory writes are 

required to the same memory bank.  When a loop is slowed down, the ITER signal 

prevents operation of the macro while the FOR loop is processing other lines of code 

within the FOR loop.  The VALID signal only remains high during the time that the 

macro is being executed. 

The final signal, ITER, is used when the number of clocks per iteration of a loop 

is greater than one.  This allows for providing a pulse that is automatically generated once 
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per iteration.  By doing so, an incrementer could be programmed such that it will only 

increment once per loop iteration.  This signal, along with the VALID signal, is useful for 

creating enable flip-flops. 

Figure 62 is taken from [15] to provide a graphical representation of these signals 

during execution of a stateful macro. 

 

Figure 63  Stateful macro timing diagram, From [15] 
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APPENDIX B. SRC-6 LESSONS LEARNED 

A. MACROS IN A LOOP 

When a “function” call is made to a macro, it looks like any other function call 

made in C.  In discussions with Jeff Hammes of SRC Computers, new information was 

learned about the behavior between the C portion of the code and user defined macros.  

In a conventional C program, when a function call is made, the appropriate registers are 

loaded and a jump is executed to the specified portion of memory that contains the 

function code.  This is not the same on the SRC-6 when a function call to a macro is 

made.  Conceptually, each call to a macro is laid down on the FPGA separately.  This 

means that if you have two macro calls, one circuit will be placed on one part of the 

FPGA, while an identical circuit will be placed at a different part.  Now, consider the 

case where the C code makes a function call from within a FOR loop.  Other looping 

methods can be used to accomplish this.  But, for the sake of brevity, only the FOR loop 

will be discussed.  In this case, only one circuit is placed on the FPGA.  When the C code 

is compiled onto the FPGA, the FOR loop is then translated into a machine which sends 

control signals to the one instance of the macro.  This became of interest to this research, 

since the concept of feedback is necessary for the implementation of the genetic 

algorithm.  It is because of this property that the value in a register stored at the end of 

iteration of a loop will still be present during the next iteration of the loop.  This in effect 

creates a stateful macro, although without the normal control signals associated with a 

stateful macro. 

B. TIMER ACCESS 

The initial idea to provide a random source for ROM address in the macro was to 

use the timer in the subr.mc file.  This is not possible since a call to the timer function 

made inside a loop will disable loop pipelining.  By doing this, the GA macro cannot be 

made stateful, which the current implementation of the GA requires.  Since that is a  
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considerable undertaking, the decision was made to create random element in the main.c 

file, and then allow incrimination along with the CRC function to provide the random 

access to the ROMs. 

C. MAKEFILE OPTIONS 

An attempt was made to change the mode of operation of the GA in which the 

latency of the GA was changed to 1, vice the normal 17.  In doing so, a new problem 

would be computed each clock cycle until the feedback brings the old values back to the 

input.  When the normal version of the circuit was implemented, it was always possible 

to meet the 100.0 MHz timing requirement for the SRC-6.  However, changing the 

latency of the circuit to 1 caused the frequency to drop to 90.8 MHz.  After consulting the 

Xilinx place and route and mapping documentation, options were found that when used 

sped up the circuit.  Table 31 shows the various options that were used and the resulting 

frequency achieved. 

 

Slowed version of circuit – baseline 100.0 MHz 
Fast 90.8 MHz 
Utilizing MAP E 92.8 MHz 
-timing option  94.0 MHz 
Removing “extra” inputs, extra fanouts 100.0 MHz 

Table 31.   Place and route and mapping options 

Normally the microprocessor portion of the program is contained within a file 

called main.c.  However, in order to use some more advanced programming techniques it 

is desired that C++ be used.  In order to accomplish this, two things must be changed.  

First, the main.c needs to be renamed to main.cc.  Second, in the makefile, the linker 

option needs to be set as follows:  LD = icpc. 
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APPENDIX C. AUXILIARY PROGRAMS 

A. INFOER 

In order to help produce this project several other side programs were created in 

C++.  The following is a brief description of them.  The first is a program called “infoer”.  

It parses the input Verilog macro and automatically generated the interface files that are 

required for the C FPGA code to be able to call a user defined macro. 

B. CODER 

The next program is entitled “coder”.  It parses a user input string to produce 

code.  This is helpful in many instances that would normally require repetitive typing.  A 

simple example of this would be in the C portion of the FPGA code.  Many times 16 

variables need to be passed to and from the Verilog macro.  The coder makes it possible 

to type the following line to produce 16 lines of code that would assign a variable to an 

element in an array: 

!0:15 in%d=IN[%d];\n! 

The resultant code that is generated would be: 

in0=IN[0]; , in1=IN[1]; 

and so forth.  This has an advantage over the Verilog generate statement.  For example, 

compiling the transeunt triangle for 9n >  was not possible since it uses generate 

statements, and an out of memory error is eventually reached.  However, if the transeunt 

triangle code for 10n =  will compile if the generate statements are replaced with the 

actual lines of code that are to be generated. 

C. VERILOG GENERATOR 

The next program that was created is called Verilog Generator.  It has been 

expanded from previous projects to include generating the ROMs discussed in this 

project.  This is important because it allows creating new ROMs with either different 



 98

words, or more words.  It also contains the code necessary to implement the CRC 

circuitry.  Finally, a Verilog standard library was created.  This library contains various 

types of flip-flops, e.g. those with an enable, set, reset, and multiplexors that were used.  

This proved useful for the times that it is more practical to use structural Verilog versus 

behavioral. 
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APPENDIX D. GA CODE 

module CRC_table_rom(adr, val); 

 //Creates a CRC-32 lookup table 

 input [7:0] adr; 

 output [31:0] val; 

 reg [31:0] val; 

 always @(adr) 

  case (adr) 

  0: val = 32'h00000000; 

  1: val = 32'h77073096; 

  2: val = 32'hee0e612c; 

  3: val = 32'h990951ba; 

  4: val = 32'h076dc419; 

  5: val = 32'h706af48f; 

  6: val = 32'he963a535; 

  7: val = 32'h9e6495a3; 

  8: val = 32'h0edb8832; 

  9: val = 32'h79dcb8a4; 

  10: val = 32'he0d5e91e; 

  11: val = 32'h97d2d988; 

  12: val = 32'h09b64c2b; 

  13: val = 32'h7eb17cbd; 

  14: val = 32'he7b82d07; 

  15: val = 32'h90bf1d91; 

  16: val = 32'h1db71064; 

  17: val = 32'h6ab020f2; 

  18: val = 32'hf3b97148; 

  19: val = 32'h84be41de; 

  20: val = 32'h1adad47d; 

  21: val = 32'h6ddde4eb; 

  22: val = 32'hf4d4b551; 

  23: val = 32'h83d385c7; 

  24: val = 32'h136c9856; 

  25: val = 32'h646ba8c0; 

  26: val = 32'hfd62f97a; 

  27: val = 32'h8a65c9ec; 

  28: val = 32'h14015c4f; 

  29: val = 32'h63066cd9; 

  30: val = 32'hfa0f3d63; 

  31: val = 32'h8d080df5; 
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  32: val = 32'h3b6e20c8; 

  33: val = 32'h4c69105e; 

  34: val = 32'hd56041e4; 

  35: val = 32'ha2677172; 

  36: val = 32'h3c03e4d1; 

  37: val = 32'h4b04d447; 

  38: val = 32'hd20d85fd; 

  39: val = 32'ha50ab56b; 

  40: val = 32'h35b5a8fa; 

  41: val = 32'h42b2986c; 

  42: val = 32'hdbbbc9d6; 

  43: val = 32'hacbcf940; 

  44: val = 32'h32d86ce3; 

  45: val = 32'h45df5c75; 

  46: val = 32'hdcd60dcf; 

  47: val = 32'habd13d59; 

  48: val = 32'h26d930ac; 

  49: val = 32'h51de003a; 

  50: val = 32'hc8d75180; 

  51: val = 32'hbfd06116; 

  52: val = 32'h21b4f4b5; 

  53: val = 32'h56b3c423; 

  54: val = 32'hcfba9599; 

  55: val = 32'hb8bda50f; 

  56: val = 32'h2802b89e; 

  57: val = 32'h5f058808; 

  58: val = 32'hc60cd9b2; 

  59: val = 32'hb10be924; 

  60: val = 32'h2f6f7c87; 

  61: val = 32'h58684c11; 

  62: val = 32'hc1611dab; 

  63: val = 32'hb6662d3d; 

  64: val = 32'h76dc4190; 

  65: val = 32'h01db7106; 

  66: val = 32'h98d220bc; 

  67: val = 32'hefd5102a; 

  68: val = 32'h71b18589; 

  69: val = 32'h06b6b51f; 

  70: val = 32'h9fbfe4a5; 

  71: val = 32'he8b8d433; 

  72: val = 32'h7807c9a2; 

  73: val = 32'h0f00f934; 
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  74: val = 32'h9609a88e; 

  75: val = 32'he10e9818; 

  76: val = 32'h7f6a0dbb; 

  77: val = 32'h086d3d2d; 

  78: val = 32'h91646c97; 

  79: val = 32'he6635c01; 

  80: val = 32'h6b6b51f4; 

  81: val = 32'h1c6c6162; 

  82: val = 32'h856530d8; 

  83: val = 32'hf262004e; 

  84: val = 32'h6c0695ed; 

  85: val = 32'h1b01a57b; 

  86: val = 32'h8208f4c1; 

  87: val = 32'hf50fc457; 

  88: val = 32'h65b0d9c6; 

  89: val = 32'h12b7e950; 

  90: val = 32'h8bbeb8ea; 

  91: val = 32'hfcb9887c; 

  92: val = 32'h62dd1ddf; 

  93: val = 32'h15da2d49; 

  94: val = 32'h8cd37cf3; 

  95: val = 32'hfbd44c65; 

  96: val = 32'h4db26158; 

  97: val = 32'h3ab551ce; 

  98: val = 32'ha3bc0074; 

  99: val = 32'hd4bb30e2; 

  100: val = 32'h4adfa541; 

  101: val = 32'h3dd895d7; 

  102: val = 32'ha4d1c46d; 

  103: val = 32'hd3d6f4fb; 

  104: val = 32'h4369e96a; 

  105: val = 32'h346ed9fc; 

  106: val = 32'had678846; 

  107: val = 32'hda60b8d0; 

  108: val = 32'h44042d73; 

  109: val = 32'h33031de5; 

  110: val = 32'haa0a4c5f; 

  111: val = 32'hdd0d7cc9; 

  112: val = 32'h5005713c; 

  113: val = 32'h270241aa; 

  114: val = 32'hbe0b1010; 

  115: val = 32'hc90c2086; 
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  116: val = 32'h5768b525; 

  117: val = 32'h206f85b3; 

  118: val = 32'hb966d409; 

  119: val = 32'hce61e49f; 

  120: val = 32'h5edef90e; 

  121: val = 32'h29d9c998; 

  122: val = 32'hb0d09822; 

  123: val = 32'hc7d7a8b4; 

  124: val = 32'h59b33d17; 

  125: val = 32'h2eb40d81; 

  126: val = 32'hb7bd5c3b; 

  127: val = 32'hc0ba6cad; 

  128: val = 32'hedb88320; 

  129: val = 32'h9abfb3b6; 

  130: val = 32'h03b6e20c; 

  131: val = 32'h74b1d29a; 

  132: val = 32'head54739; 

  133: val = 32'h9dd277af; 

  134: val = 32'h04db2615; 

  135: val = 32'h73dc1683; 

  136: val = 32'he3630b12; 

  137: val = 32'h94643b84; 

  138: val = 32'h0d6d6a3e; 

  139: val = 32'h7a6a5aa8; 

  140: val = 32'he40ecf0b; 

  141: val = 32'h9309ff9d; 

  142: val = 32'h0a00ae27; 

  143: val = 32'h7d079eb1; 

  144: val = 32'hf00f9344; 

  145: val = 32'h8708a3d2; 

  146: val = 32'h1e01f268; 

  147: val = 32'h6906c2fe; 

  148: val = 32'hf762575d; 

  149: val = 32'h806567cb; 

  150: val = 32'h196c3671; 

  151: val = 32'h6e6b06e7; 

  152: val = 32'hfed41b76; 

  153: val = 32'h89d32be0; 

  154: val = 32'h10da7a5a; 

  155: val = 32'h67dd4acc; 

  156: val = 32'hf9b9df6f; 

  157: val = 32'h8ebeeff9; 
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  158: val = 32'h17b7be43; 

  159: val = 32'h60b08ed5; 

  160: val = 32'hd6d6a3e8; 

  161: val = 32'ha1d1937e; 

  162: val = 32'h38d8c2c4; 

  163: val = 32'h4fdff252; 

  164: val = 32'hd1bb67f1; 

  165: val = 32'ha6bc5767; 

  166: val = 32'h3fb506dd; 

  167: val = 32'h48b2364b; 

  168: val = 32'hd80d2bda; 

  169: val = 32'haf0a1b4c; 

  170: val = 32'h36034af6; 

  171: val = 32'h41047a60; 

  172: val = 32'hdf60efc3; 

  173: val = 32'ha867df55; 

  174: val = 32'h316e8eef; 

  175: val = 32'h4669be79; 

  176: val = 32'hcb61b38c; 

  177: val = 32'hbc66831a; 

  178: val = 32'h256fd2a0; 

  179: val = 32'h5268e236; 

  180: val = 32'hcc0c7795; 

  181: val = 32'hbb0b4703; 

  182: val = 32'h220216b9; 

  183: val = 32'h5505262f; 

  184: val = 32'hc5ba3bbe; 

  185: val = 32'hb2bd0b28; 

  186: val = 32'h2bb45a92; 

  187: val = 32'h5cb36a04; 

  188: val = 32'hc2d7ffa7; 

  189: val = 32'hb5d0cf31; 

  190: val = 32'h2cd99e8b; 

  191: val = 32'h5bdeae1d; 

  192: val = 32'h9b64c2b0; 

  193: val = 32'hec63f226; 

  194: val = 32'h756aa39c; 

  195: val = 32'h026d930a; 

  196: val = 32'h9c0906a9; 

  197: val = 32'heb0e363f; 

  198: val = 32'h72076785; 

  199: val = 32'h05005713; 
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  200: val = 32'h95bf4a82; 

  201: val = 32'he2b87a14; 

  202: val = 32'h7bb12bae; 

  203: val = 32'h0cb61b38; 

  204: val = 32'h92d28e9b; 

  205: val = 32'he5d5be0d; 

  206: val = 32'h7cdcefb7; 

  207: val = 32'h0bdbdf21; 

  208: val = 32'h86d3d2d4; 

  209: val = 32'hf1d4e242; 

  210: val = 32'h68ddb3f8; 

  211: val = 32'h1fda836e; 

  212: val = 32'h81be16cd; 

  213: val = 32'hf6b9265b; 

  214: val = 32'h6fb077e1; 

  215: val = 32'h18b74777; 

  216: val = 32'h88085ae6; 

  217: val = 32'hff0f6a70; 

  218: val = 32'h66063bca; 

  219: val = 32'h11010b5c; 

  220: val = 32'h8f659eff; 

  221: val = 32'hf862ae69; 

  222: val = 32'h616bffd3; 

  223: val = 32'h166ccf45; 

  224: val = 32'ha00ae278; 

  225: val = 32'hd70dd2ee; 

  226: val = 32'h4e048354; 

  227: val = 32'h3903b3c2; 

  228: val = 32'ha7672661; 

  229: val = 32'hd06016f7; 

  230: val = 32'h4969474d; 

  231: val = 32'h3e6e77db; 

  232: val = 32'haed16a4a; 

  233: val = 32'hd9d65adc; 

  234: val = 32'h40df0b66; 

  235: val = 32'h37d83bf0; 

  236: val = 32'ha9bcae53; 

  237: val = 32'hdebb9ec5; 

  238: val = 32'h47b2cf7f; 

  239: val = 32'h30b5ffe9; 

  240: val = 32'hbdbdf21c; 

  241: val = 32'hcabac28a; 
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  242: val = 32'h53b39330; 

  243: val = 32'h24b4a3a6; 

  244: val = 32'hbad03605; 

  245: val = 32'hcdd70693; 

  246: val = 32'h54de5729; 

  247: val = 32'h23d967bf; 

  248: val = 32'hb3667a2e; 

  249: val = 32'hc4614ab8; 

  250: val = 32'h5d681b02; 

  251: val = 32'h2a6f2b94; 

  252: val = 32'hb40bbe37; 

  253: val = 32'hc30c8ea1; 

  254: val = 32'h5a05df1b; 

  255: val = 32'h2d02ef8d; 

  default: val=32'h0; 

  endcase 

endmodule 

 

module CRC_calc(in, val); 

//module CRC_calc(A, B, C, D, val); 

 input [31:0] in; 

 //input [7:0] A, B, C, D; 

 output [31:0] val; 

 wire [31:0] val; 

 wire [31:0] regA, regB, regC, regD; 

 wire [31:0] topA, topB, topC, topD; 

  

 //CRC_table_rom tA(8'hff^A, topA); 

 CRC_table_rom tA(8'hff^in[31:24], topA); 

 assign regA= 32'h00ffffff ^ topA; 

 

 //CRC_table_rom tB(regA[7:0] ^ B, topB); 

 CRC_table_rom tB(regA[7:0] ^ in[23:16], topB); 

 assign regB= {8'h00, regA[31:8]}^ topB; 

 

 //CRC_table_rom tC(regB[7:0] ^ C, topC); 

 CRC_table_rom tC(regB[7:0] ^ in[15:8], topC); 

 assign regC= {8'h00, regB[31:8]}^ topC; 

 

 //CRC_table_rom tD(regC[7:0] ^ D, topD); 

 CRC_table_rom tD(regC[7:0] ^ in[7:0], topD); 

 assign regD= {8'h00, regC[31:8]}^ topD; 
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 assign val= regD^ 32'hffffffff; 

endmodule 

 

module OC (TT, Count);  

 input[3:0] TT;  

 output[2:0] Count;  

 wire [2:0] Count;  

 assign Count[0]=TT[3]^TT[2]^TT[1]^TT[0];  

 assign 
Count[1]=(TT[3]&TT[2]|TT[3]&TT[1]|TT[3]&TT[0]|TT[2]&TT[1]|TT[2]&TT[0]|TT[1]&TT[0])&~(TT[3
]&TT[2]&TT[1]&TT[0]);  

 assign Count[2]=TT[3]&TT[2]&TT[1]&TT[0];  

endmodule  

 

module ones64(TT, VALID, RESET, ITER, CLK, count, timer, crcv); 

 input [63:0] TT; 

 input VALID, RESET, ITER; 

 input CLK; 

 output [6:0] count; 

 reg [6:0] count; 

 output [63:0] timer; 

 reg [63:0] timer; 

 output [31:0] crcv; 

 reg [31:0] crcv; 

 

 reg [63:0] d1; 

 wire [31:0] w1, w2; 

 

 reg [4:0] counta, countb, countc, countd; 

 wire [2:0] count0, count1, count2, count3, count4, count5, count6, count7, 
count8, count9, count10, count11, count12, count13, count14, count15; 

 

 CRC_calc cc(TT[31:0], w1); 

 

 dff_eNB ff(w1, VALID&ITER, CLK, w2);  

   

 OC o0(TT[3:0], count0); 

 OC o1(TT[7:4], count1); 

 OC o2(TT[11:8], count2); 

 OC o3(TT[15:12], count3); 

 OC o4(TT[19:16], count4); 

 OC o5(TT[23:20], count5); 

 OC o6(TT[27:24], count6); 
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 OC o7(TT[31:28], count7); 

 OC o8(TT[35:32], count8); 

 OC o9(TT[39:36], count9); 

 OC o10(TT[43:40], count10); 

 OC o11(TT[47:44], count11); 

 OC o12(TT[51:48], count12); 

 OC o13(TT[55:52], count13); 

 OC o14(TT[59:56], count14); 

 OC o15(TT[63:60], count15); 

  

 always @(posedge CLK) 

 begin 

  counta <=count0+count1+count2+count3; 

  countb <=+count4+count5+count6+count7; 

  countc <=count8+count9+count10+count11; 

  countd <=count12+count13+count14+count15; 

  count <=counta+countb+countc+countd; 

 

  d1 <= TT; 

  timer <= d1; 

 

  crcv <= w2; 

 end 

endmodule 

 

module dff_NB(d, CLK, q); 

 parameter n=16; 

 input [n-1:0] d; 

 input CLK; 

 output [n-1:0] q; 

 reg [n-1:0] q; 

 always @(posedge CLK) 

  q <= d; 

endmodule 

 

module oc5(TT, out); 

 input [4:0] TT; 

 output [2:0] out; 

 reg [2:0] out; 

  

 wire [2:0] val; 

 oc4 moc4(TT[3:0], val); 
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 always @(TT, val) 

  out <= val + TT[4]; 

endmodule 

 

module oc4 (TT, Count);  

 input[3:0] TT;  

 output[2:0] Count;  

 wire [2:0] Count;  

 assign Count[0]=TT[3]^TT[2]^TT[1]^TT[0];  

 assign 
Count[1]=(TT[3]&TT[2]|TT[3]&TT[1]|TT[3]&TT[0]|TT[2]&TT[1]|TT[2]&TT[0]|TT[1]&TT[0])&~(TT[3
]&TT[2]&TT[1]&TT[0]);  

 assign Count[2]=TT[3]&TT[2]&TT[1]&TT[0];  

endmodule  

 

module fit6(TT, CLK, z); 

  parameter wid_fit=8; 

  parameter wid_TT=14; 

        input [wid_TT-1:0] TT; 

        input CLK; 

        output [wid_fit+wid_TT-1:0] z; 

        reg [wid_fit+wid_TT-1:0] z; 

 

        reg [wid_fit-1:0] zd; 

         

        wire [2:0] ones6a, ones6b, ones3, ones2, ones1; 

        wire [2:0] ones6ad, ones6bd, ones3d, ones2d, ones1d; 

        reg [7:0] ones6; 

        reg [7:0] val6, val3, val2, val1; 

  reg [wid_TT-1:0] r1_TT;//, r2_TT; 

  oc5 moc6a(TT[13:9], ones6ad); 

  oc4 moc6b(TT[8:5], ones6bd); 

        oc4 moc3({2'b00, TT[4:3]}, ones3d); 

        oc4 moc2({3'b000, TT[2]}, ones2d); 

        oc4 moc1({2'b0, TT[1:0]}, ones1d); 

 

  defparam f6a.n=3; 

  dff_NB f6a(ones6ad, CLK, ones6a); 

  defparam f6b.n=3; 

  dff_NB f6b(ones6bd, CLK, ones6b); 

  defparam f3.n=3; 

  dff_NB f3(ones3d, CLK, ones3); 

  defparam f2.n=3; 
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  dff_NB f2(ones2d, CLK, ones2); 

  defparam f1.n=3; 

  dff_NB f1(ones1d, CLK, ones1); 

 

  always @(posedge CLK) 

  begin 

   r1_TT <= TT; 

   z[wid_fit+wid_TT-1:wid_fit] <= r1_TT; 

   z[wid_fit-1:0] <= zd; 

  end 

  always @(ones6a, ones6b) 

   ones6 <= ones6a + ones6b; 

   

 

        always @(ones6, ones3, ones2, ones1) 

        begin 

         case (ones6) 

          3:   begin 

              val6 <= 60; 

              case (ones3) 

               0: val3 <=0; 

               1: val3 <=30; 

               2: val3 <=60; 

               default: val3 <=0; 

              endcase 

              case (ones2) 

               0: val2 <=0; 

               1: val2 <=60; 

               default: val2 <=0; 

              endcase 

              case (ones1) 

               0: val1 <=0; 

               1: val1 <=30; 

               2: val1 <=60; 

               default: val1 <=0; 

              endcase 

             end 

          4:   begin 

              val6 <= 80; 

              if (ones2==1) 

              begin 

               val3 <=0; 
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               val2 <=80; 

               case (ones1) 

                0: val1 <=0; 

                1: val1 <=40; 

                2: val1 <=80; 

                default: val1 
<=0; 

               endcase 

              end 

              else 

              begin 

               val3 <=80; 

               val2 <=0; 

               if (ones1==1) 

                val1 <=80; 

               else 

                val1 <=0; 

              end 

             end 

          default: begin 

              case (ones6) 

               0: val6 <=0; 

               1: val6 <=10; 

               2: val6 <=20; 

               5: val6 <=30; 

               6: val6 <=40; 

               7: val6 <=30; 

               8: val6 <=20; 

               9: val6 <=10; 

               default: val6 <=0; 

              endcase 

              case (ones3) 

               0: val3 <=15; 

               1: val3 <=60; 

               2: val3 <=15; 

               default: val3 <=0; 

              endcase 

              case (ones2) 

               0: val2 <=60; 

               1: val2 <=15; 

               default: val2 <=0; 

              endcase 
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              case (ones1) 

               0: val1 <=15; 

               1: val1 <=60; 

               2: val1 <=15; 

               default: val1 <=0; 

              endcase 

             end 

         endcase 

   zd = val6+val3+val2+val1; 

        end 

endmodule 

 

 

 

module dff_cse(d, CLR, SET, EN, CLK, q); 

 input d, CLR, SET, EN, CLK; 

 output q; 

 reg q; 

 always @(posedge CLR or posedge SET or posedge CLK) 

  if (CLR) 

   q<=1'b0; 

  else if (SET) 

   q<=1'b1; 

  else if (EN) 

   q<=d; 

endmodule 

 

 

module LFSR(CLR, SET, EN, CLK, q); 

 parameter n=6; 

 //parameter taps=4; 

 //Parameter n corresponds to the number of bits in the LFSR 

 //Each of the tapX parameters directly corresponds to the maximal tap 

 //as shown in Table 3.8 of Dixon 

  

 //In order to properly use the LFSR, the register must first be 
initialized with the CLR and SET inputs 

 //The value in SET is the first value stored in the register 

 //The value of CLR must be the NOT of SET 

 //SET and CLR must be LOW after initialization for the LFSR to sequence 
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 parameter tap0=0; 

 parameter tap1=0; 

 parameter tap2=0; 

 parameter tap3=0; 

 input [n-1:0] CLR, SET; 

 input EN, CLK; 

 output [n-1:0] q; 

 wire [n-1:0] q; 

 wire inwire; 

 assign inwire = q[tap0]^q[tap1]^q[tap2]^q[tap3]; 

 dff_cse ff0(inwire, CLR[0], SET[0], EN, CLK, q[0]); 

 genvar k; 

 generate 

 for (k=1; k<n; k=k+1) 

  begin: ea_ff 

   dff_cse ff(q[k-1], CLR[k], SET[k], EN, CLK, q[k]); 

  end 

 endgenerate 

endmodule 

 

 

module lfsrs(rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9, rnd10, 
rnd11, rnd12, rnd13, rnd14, rnd15, CLR, VALID, ITER, CLK, w_rng0, w_rng1, w_rng2, w_rng3, 
w_rng4, w_rng5, w_rng6, w_rng7, w_rng8, w_rng9, w_rng10, w_rng11, w_rng12, w_rng13, 
w_rng14, w_rng15); 

 //previous is the 14-bit string from the last generation 

 //next is the 22-bit string of {14-bit chromosome, 8-bit fitness value} 

  

 parameter n=14; 

  

 parameter AAA=13; 

 parameter BBB=4; 

 parameter CCC=2; 

 parameter DDD=0; 

 

 input [n-1:0] rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9, 
rnd10, rnd11, rnd12, rnd13, rnd14, rnd15; 

 input CLR, VALID, ITER, CLK; 

 

 output [n-1:0] w_rng0, w_rng1, w_rng2, w_rng3, w_rng4, w_rng5, w_rng6, 
w_rng7, w_rng8, w_rng9, w_rng10, w_rng11, w_rng12, w_rng13, w_rng14, w_rng15; 

 wire [n-1:0] w_rng0, w_rng1, w_rng2, w_rng3, w_rng4, w_rng5, w_rng6, 
w_rng7, w_rng8, w_rng9, w_rng10, w_rng11, w_rng12, w_rng13, w_rng14, w_rng15; 

 



 113

 wire [n-1:0] clears [15:0]; 

 wire [n-1:0] sets [15:0]; 

 

  

 assign sets[0]=rnd0; 

 assign sets[1]=rnd1; 

 assign sets[2]=rnd2; 

 assign sets[3]=rnd3; 

 assign sets[4]=rnd4; 

 assign sets[5]=rnd5; 

 assign sets[6]=rnd6; 

 assign sets[7]=rnd7; 

 assign sets[8]=rnd8; 

 assign sets[9]=rnd9; 

 assign sets[10]=rnd10; 

 assign sets[11]=rnd11; 

 assign sets[12]=rnd12; 

 assign sets[13]=rnd13; 

 assign sets[14]=rnd14; 

 assign sets[15]=rnd15; 

 assign clears[0]=~sets[0]; 

 assign clears[1]=~sets[1]; 

 assign clears[2]=~sets[2]; 

 assign clears[3]=~sets[3]; 

 assign clears[4]=~sets[4]; 

 assign clears[5]=~sets[5]; 

 assign clears[6]=~sets[6]; 

 assign clears[7]=~sets[7]; 

 assign clears[8]=~sets[8]; 

 assign clears[9]=~sets[9]; 

 assign clears[10]=~sets[10]; 

 assign clears[11]=~sets[11]; 

 assign clears[12]=~sets[12]; 

 assign clears[13]=~sets[13]; 

 assign clears[14]=~sets[14]; 

 assign clears[15]=~sets[15];  

 

 defparam rng0.n=14; 

 defparam rng0.tap0=AAA; 

 defparam rng0.tap1=BBB; 

 defparam rng0.tap2=CCC; 

 defparam rng0.tap3=DDD; 
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 LFSR rng0(clears[0]&{14{CLR}}, sets[0]&{14{CLR}}, VALID&ITER, CLK, 
w_rng0[13:0]); 

 defparam rng1.n=14; 

 defparam rng1.tap0=AAA; 

 defparam rng1.tap1=BBB; 

 defparam rng1.tap2=CCC; 

 defparam rng1.tap3=DDD; 

 LFSR rng1(clears[1]&{14{CLR}}, sets[1]&{14{CLR}}, VALID&ITER, CLK, 
w_rng1[13:0]); 

 defparam rng2.n=14; 

 defparam rng2.tap0=AAA; 

 defparam rng2.tap1=BBB; 

 defparam rng2.tap2=CCC; 

 defparam rng2.tap3=DDD; 

 LFSR rng2(clears[2]&{14{CLR}}, sets[2]&{14{CLR}}, VALID&ITER, CLK, 
w_rng2[13:0]); 

 defparam rng3.n=14; 

 defparam rng3.tap0=AAA; 

 defparam rng3.tap1=BBB; 

 defparam rng3.tap2=CCC; 

 defparam rng3.tap3=DDD; 

 LFSR rng3(clears[3]&{14{CLR}}, sets[3]&{14{CLR}}, VALID&ITER, CLK, 
w_rng3[13:0]); 

 defparam rng4.n=14; 

 defparam rng4.tap0=AAA; 

 defparam rng4.tap1=BBB; 

 defparam rng4.tap2=CCC; 

 defparam rng4.tap3=DDD; 

 LFSR rng4(clears[4]&{14{CLR}}, sets[4]&{14{CLR}}, VALID&ITER, CLK, 
w_rng4[13:0]); 

 defparam rng5.n=14; 

 defparam rng5.tap0=AAA; 

 defparam rng5.tap1=BBB; 

 defparam rng5.tap2=CCC; 

 defparam rng5.tap3=DDD; 

 LFSR rng5(clears[5]&{14{CLR}}, sets[5]&{14{CLR}}, VALID&ITER, CLK, 
w_rng5[13:0]); 

 defparam rng6.n=14; 

 defparam rng6.tap0=AAA; 

 defparam rng6.tap1=BBB; 

 defparam rng6.tap2=CCC; 

 defparam rng6.tap3=DDD; 

 LFSR rng6(clears[6]&{14{CLR}}, sets[6]&{14{CLR}}, VALID&ITER, CLK, 
w_rng6[13:0]); 

 defparam rng7.n=14; 
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 defparam rng7.tap0=AAA; 

 defparam rng7.tap1=BBB; 

 defparam rng7.tap2=CCC; 

 defparam rng7.tap3=DDD; 

 LFSR rng7(clears[7]&{14{CLR}}, sets[7]&{14{CLR}}, VALID&ITER, CLK, 
w_rng7[13:0]); 

 defparam rng8.n=14; 

 defparam rng8.tap0=AAA; 

 defparam rng8.tap1=BBB; 

 defparam rng8.tap2=CCC; 

 defparam rng8.tap3=DDD; 

 LFSR rng8(clears[8]&{14{CLR}}, sets[8]&{14{CLR}}, VALID&ITER, CLK, 
w_rng8[13:0]); 

 defparam rng9.n=14; 

 defparam rng9.tap0=AAA; 

 defparam rng9.tap1=BBB; 

 defparam rng9.tap2=CCC; 

 defparam rng9.tap3=DDD; 

 LFSR rng9(clears[9]&{14{CLR}}, sets[9]&{14{CLR}}, VALID&ITER, CLK, 
w_rng9[13:0]); 

 defparam rng10.n=14; 

 defparam rng10.tap0=AAA; 

 defparam rng10.tap1=BBB; 

 defparam rng10.tap2=CCC; 

 defparam rng10.tap3=DDD; 

 LFSR rng10(clears[10]&{14{CLR}}, sets[10]&{14{CLR}}, VALID&ITER, CLK, 
w_rng10[13:0]); 

 defparam rng11.n=14; 

 defparam rng11.tap0=AAA; 

 defparam rng11.tap1=BBB; 

 defparam rng11.tap2=CCC; 

 defparam rng11.tap3=DDD; 

 LFSR rng11(clears[11]&{14{CLR}}, sets[11]&{14{CLR}}, VALID&ITER, CLK, 
w_rng11[13:0]); 

 defparam rng12.n=14; 

 defparam rng12.tap0=AAA; 

 defparam rng12.tap1=BBB; 

 defparam rng12.tap2=CCC; 

 defparam rng12.tap3=DDD; 

 LFSR rng12(clears[12]&{14{CLR}}, sets[12]&{14{CLR}}, VALID&ITER, CLK, 
w_rng12[13:0]); 

 defparam rng13.n=14; 

 defparam rng13.tap0=AAA; 

 defparam rng13.tap1=BBB; 
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 defparam rng13.tap2=CCC; 

 defparam rng13.tap3=DDD; 

 LFSR rng13(clears[13]&{14{CLR}}, sets[13]&{14{CLR}}, VALID&ITER, CLK, 
w_rng13[13:0]); 

 defparam rng14.n=14; 

 defparam rng14.tap0=AAA; 

 defparam rng14.tap1=BBB; 

 defparam rng14.tap2=CCC; 

 defparam rng14.tap3=DDD; 

 LFSR rng14(clears[14]&{14{CLR}}, sets[14]&{14{CLR}}, VALID&ITER, CLK, 
w_rng14[13:0]); 

 defparam rng15.n=14; 

 defparam rng15.tap0=AAA; 

 defparam rng15.tap1=BBB; 

 defparam rng15.tap2=CCC; 

 defparam rng15.tap3=DDD; 

 LFSR rng15(clears[15]&{14{CLR}}, sets[15]&{14{CLR}}, VALID&ITER, CLK, 
w_rng15[13:0]); 

  

endmodule 

 

 

module slowhalflife(TT, CLR, VALID, ITER, CLK, clear); 

 parameter wid_TT=14; 

 input [wid_TT-1:0] TT; 

 input CLR, VALID, ITER, CLK; 

 output clear; 

 wire clear; 

  

 reg [wid_TT-1:0] d1, d2, d3; 

 reg [2:0] isequal; 

 

 assign clear = &isequal; 

  

 always @(posedge CLK or posedge CLR) 

 begin 

  if (CLR) 

  begin 

   d1 <= {wid_TT{1'b1}}; 

   d2 <= {wid_TT{1'b0}}; 

   d3 <= {wid_TT{1'b1}}; 

  end 

  else 
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  begin 

   if (VALID&ITER) 

   begin 

    d1 <= TT; 

    d2 <= d1; 

    d3 <= d2; 

   end 

  end 

 end 

  

 always @(TT, d1, d2, d3) 

 begin 

  isequal[0] <= (TT==d1)?1:0; 

  isequal[1] <= (d1==d2)?1:0; 

  isequal[2] <= (d2==d3)?1:0; 

 end 

endmodule 

 

 

module clearunit(cur0, cur1, cur2, cur3, cur4, cur5, cur6, cur7, cur8, cur9, 
cur10, cur11, cur12, cur13, cur14, cur15, CLR, VALID, ITER, CLK, cleared); 

 input [13:0] cur0, cur1, cur2, cur3, cur4, cur5, cur6, cur7, cur8, cur9, 
cur10, cur11, cur12, cur13, cur14, cur15; 

 input CLR, VALID, ITER, CLK; 

 output [15:0] cleared; 

 wire [15:0] cleared; 

  

 wire [15:0] c1; 

  

 reg [2:0] c2; 

  

 //slowhalflife(TT, CLR, VALID, ITER, CLK, clear); 

 slowhalflife st12_0(cur0, CLR, VALID, ITER, CLK, c1[0]); 

 slowhalflife st12_1(cur1, CLR, VALID, ITER, CLK, c1[1]); 

 slowhalflife st12_2(cur2, CLR, VALID, ITER, CLK, c1[2]); 

 slowhalflife st12_3(cur3, CLR, VALID, ITER, CLK, c1[3]); 

 slowhalflife st12_4(cur4, CLR, VALID, ITER, CLK, c1[4]); 

 slowhalflife st12_5(cur5, CLR, VALID, ITER, CLK, c1[5]); 

 slowhalflife st12_6(cur6, CLR, VALID, ITER, CLK, c1[6]); 

 slowhalflife st12_7(cur7, CLR, VALID, ITER, CLK, c1[7]); 

 slowhalflife st12_8(cur8, CLR, VALID, ITER, CLK, c1[8]); 

 slowhalflife st12_9(cur9, CLR, VALID, ITER, CLK, c1[9]); 

 slowhalflife st12_10(cur10, CLR, VALID, ITER, CLK, c1[10]); 
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 slowhalflife st12_11(cur11, CLR, VALID, ITER, CLK, c1[11]); 

 slowhalflife st12_12(cur12, CLR, VALID, ITER, CLK, c1[12]); 

 slowhalflife st12_13(cur13, CLR, VALID, ITER, CLK, c1[13]); 

 slowhalflife st12_14(cur14, CLR, VALID, ITER, CLK, c1[14]); 

 slowhalflife st12_15(cur15, CLR, VALID, ITER, CLK, c1[15]); 

  

 assign cleared[0] = |c2 | CLR | c1[0]; 

 assign cleared[1] = |c2 | CLR | c1[1]; 

 assign cleared[2] = |c2 | CLR | c1[2]; 

 assign cleared[3] = |c2 | CLR | c1[3]; 

 assign cleared[4] = |c2 | CLR | c1[4]; 

 assign cleared[5] = |c2 | CLR | c1[5]; 

 assign cleared[6] = |c2 | CLR | c1[6]; 

 assign cleared[7] = |c2 | CLR | c1[7]; 

 assign cleared[8] = |c2 | CLR | c1[8]; 

 assign cleared[9] = |c2 | CLR | c1[9]; 

 assign cleared[10] = |c2 | CLR | c1[10]; 

 assign cleared[11] = |c2 | CLR | c1[11]; 

 assign cleared[12] = |c2 | CLR | c1[12]; 

 assign cleared[13] = |c2 | CLR | c1[13]; 

 assign cleared[14] = |c2 | CLR | c1[14]; 

 assign cleared[15] = |c2 | CLR | c1[15]; 

  

 always @(cur0, cur1, cur2, cur3) 

 begin 

  c2[0] <= (cur0==cur1)?1:0; 

  c2[1] <= (cur1==cur2)?1:0; 

  c2[2] <= (cur2==cur3)?1:0; 

 end 

endmodule 

 

 

module strgen(rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9, rnd10, 
rnd11, rnd12, rnd13, rnd14, rnd15, prev0, prev1, prev2, prev3, prev4, prev5, prev6, 
prev7, prev8, prev9, prev10, prev11, prev12, prev13, prev14, prev15, reset_val, CLR, 
VALID, ITER, CLK, r_next0, r_next1, r_next2, r_next3, r_next4, r_next5, r_next6, r_next7, 
r_next8, r_next9, r_next10,r_next11, r_next12, r_next13, r_next14, r_next15); 

 //previous is the 14-bit string from the last generation 

 //next is the 22-bit string of {14-bit chromosome, 8-bit fitness value} 

 parameter wid_TT=14; 

 parameter wid_fit=8; 
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 //---------------------------------- 

 input [13:0] rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9, 
rnd10, rnd11, rnd12, rnd13, rnd14, rnd15; 

 input[13:0] prev0, prev1, prev2, prev3, prev4, prev5, prev6, prev7, prev8, 
prev9, prev10, prev11, prev12, prev13, prev14, prev15; 

 input [7:0] reset_val; 

 

 input CLR, VALID, ITER; 

 input CLK /* synthesis syn_noclockbuf=1 syn_maxfan=100000 */ ; 

 

 output [21:0] r_next0, r_next1, r_next2, r_next3, r_next4, r_next5, 
r_next6, r_next7, r_next8, r_next9, r_next10,r_next11, r_next12, r_next13, r_next14, 
r_next15; 

 reg [21:0] r_next0, r_next1, r_next2, r_next3, r_next4, r_next5, r_next6, 
r_next7, r_next8, r_next9, r_next10,r_next11, r_next12, r_next13, r_next14, r_next15; 

 

 //---------------------------------- 

  

 reg [wid_TT+wid_fit-1:0] next0, next1, next2, next3, next4, next5, next6, 
next7, next8, next9, next10, next11, next12, next13, next14, next15; 

 

 reg [13:0] prev0d1, prev1d1, prev2d1, prev3d1, prev4d1, prev5d1, prev6d1, 
prev7d1, prev8d1, prev9d1, prev10d1, prev11d1, prev12d1, prev13d1, prev14d1, prev15d1; 

 

 wire [wid_TT-1:0] w_rng0, w_rng1, w_rng2, w_rng3, w_rng4, w_rng5, w_rng6, 
w_rng7, w_rng8, w_rng9, w_rng10, w_rng11, w_rng12, w_rng13, w_rng14, w_rng15; 

 

  

 wire [wid_TT+wid_fit-1:0] w_fit_r0, w_fit_r1, w_fit_r2, w_fit_r3, 
w_fit_r4, w_fit_r5, w_fit_r6, w_fit_r7, w_fit_r8, w_fit_r9, w_fit_r10, w_fit_r11, 
w_fit_r12, w_fit_r13, w_fit_r14, w_fit_r15; 

 wire [wid_TT+wid_fit-1:0] w_fit_p0, w_fit_p1, w_fit_p2, w_fit_p3, 
w_fit_p4, w_fit_p5, w_fit_p6, w_fit_p7, w_fit_p8, w_fit_p9, w_fit_p10, w_fit_p11, 
w_fit_p12, w_fit_p13, w_fit_p14, w_fit_p15; 

 

 wire [15:0] clearer; 

 

 lfsrs l(rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9, rnd10, 
rnd11, rnd12, rnd13, rnd14, rnd15, CLR, VALID, ITER, CLK, w_rng0, w_rng1, w_rng2, w_rng3, 
w_rng4, w_rng5, w_rng6, w_rng7, w_rng8, w_rng9, w_rng10, w_rng11, w_rng12, w_rng13, 
w_rng14, w_rng15); 

  

 fit6 fit_r0(w_rng0[13:0], CLK, w_fit_r0); 

 fit6 fit_r1(w_rng1[13:0], CLK, w_fit_r1); 

 fit6 fit_r2(w_rng2[13:0], CLK, w_fit_r2); 

 fit6 fit_r3(w_rng3[13:0], CLK, w_fit_r3); 

 fit6 fit_r4(w_rng4[13:0], CLK, w_fit_r4); 

 fit6 fit_r5(w_rng5[13:0], CLK, w_fit_r5); 
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 fit6 fit_r6(w_rng6[13:0], CLK, w_fit_r6); 

 fit6 fit_r7(w_rng7[13:0], CLK, w_fit_r7); 

 fit6 fit_r8(w_rng8[13:0], CLK, w_fit_r8); 

 fit6 fit_r9(w_rng9[13:0], CLK, w_fit_r9); 

 fit6 fit_r10(w_rng10[13:0], CLK, w_fit_r10); 

 fit6 fit_r11(w_rng11[13:0], CLK, w_fit_r11); 

 fit6 fit_r12(w_rng12[13:0], CLK, w_fit_r12); 

 fit6 fit_r13(w_rng13[13:0], CLK, w_fit_r13); 

 fit6 fit_r14(w_rng14[13:0], CLK, w_fit_r14); 

 fit6 fit_r15(w_rng15[13:0], CLK, w_fit_r15); 

 

 

 fit6 fit_p0(prev0d1, CLK, w_fit_p0); 

 fit6 fit_p1(prev1d1, CLK, w_fit_p1); 

 fit6 fit_p2(prev2d1, CLK, w_fit_p2); 

 fit6 fit_p3(prev3d1, CLK, w_fit_p3); 

 fit6 fit_p4(prev4d1, CLK, w_fit_p4); 

 fit6 fit_p5(prev5d1, CLK, w_fit_p5); 

 fit6 fit_p6(prev6d1, CLK, w_fit_p6); 

 fit6 fit_p7(prev7d1, CLK, w_fit_p7); 

 fit6 fit_p8(prev8d1, CLK, w_fit_p8); 

 fit6 fit_p9(prev9d1, CLK, w_fit_p9); 

 fit6 fit_p10(prev10d1, CLK, w_fit_p10); 

 fit6 fit_p11(prev11d1, CLK, w_fit_p11); 

 fit6 fit_p12(prev12d1, CLK, w_fit_p12); 

 fit6 fit_p13(prev13d1, CLK, w_fit_p13); 

 fit6 fit_p14(prev14d1, CLK, w_fit_p14); 

 fit6 fit_p15(prev15d1, CLK, w_fit_p15); 

 

 clearunit clru(prev0, prev1, prev2, prev3, prev4, prev5, prev6, prev7, 
prev8, prev9, prev10, prev11, prev12, prev13, prev14, prev15, CLR, VALID, ITER, CLK, 
clearer); 

  

 always @(*) 

 begin 

  next0 [wid_TT+wid_fit-1:0]<= ((clearer[0])|(w_fit_p0[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r0:w_fit_p0; 

  next1 [wid_TT+wid_fit-1:0]<= ((clearer[1])|(w_fit_p1[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r1:w_fit_p1; 

  next2 [wid_TT+wid_fit-1:0]<= ((clearer[2])|(w_fit_p2[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r2:w_fit_p2; 

  next3 [wid_TT+wid_fit-1:0]<= ((clearer[3])|(w_fit_p3[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r3:w_fit_p3; 

  next4 [wid_TT+wid_fit-1:0]<= ((clearer[4])|(w_fit_p4[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r4:w_fit_p4; 
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  next5 [wid_TT+wid_fit-1:0]<= ((clearer[5])|(w_fit_p5[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r5:w_fit_p5; 

  next6 [wid_TT+wid_fit-1:0]<= ((clearer[6])|(w_fit_p6[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r6:w_fit_p6; 

  next7 [wid_TT+wid_fit-1:0]<= ((clearer[7])|(w_fit_p7[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r7:w_fit_p7; 

  next8 [wid_TT+wid_fit-1:0]<= ((clearer[8])|(w_fit_p8[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r8:w_fit_p8; 

  next9 [wid_TT+wid_fit-1:0]<= ((clearer[9])|(w_fit_p9[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r9:w_fit_p9; 

  next10 [wid_TT+wid_fit-1:0]<= ((clearer[10])|(w_fit_p10[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r10:w_fit_p10; 

  next11 [wid_TT+wid_fit-1:0]<= ((clearer[11])|(w_fit_p11[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r11:w_fit_p11; 

  next12 [wid_TT+wid_fit-1:0]<= ((clearer[12])|(w_fit_p12[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r12:w_fit_p12; 

  next13 [wid_TT+wid_fit-1:0]<= ((clearer[13])|(w_fit_p13[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r13:w_fit_p13; 

  next14 [wid_TT+wid_fit-1:0]<= ((clearer[14])|(w_fit_p14[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r14:w_fit_p14; 

  next15 [wid_TT+wid_fit-1:0]<= ((clearer[15])|(w_fit_p15[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r15:w_fit_p15; 

  end 

 

 always @(posedge CLK) 

 begin 

  prev0d1 <= prev0; 

  prev1d1 <= prev1; 

  prev2d1 <= prev2; 

  prev3d1 <= prev3; 

  prev4d1 <= prev4; 

  prev5d1 <= prev5; 

  prev6d1 <= prev6; 

  prev7d1 <= prev7; 

  prev8d1 <= prev8; 

  prev9d1 <= prev9; 

  prev10d1 <= prev10; 

  prev11d1 <= prev11; 

  prev12d1 <= prev12; 

  prev13d1 <= prev13; 

  prev14d1 <= prev14; 

  prev15d1 <= prev15; 

 

  r_next0 <= next0; 

  r_next1 <= next1; 

  r_next2 <= next2; 
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  r_next3 <= next3; 

  r_next4 <= next4; 

  r_next5 <= next5; 

  r_next6 <= next6; 

  r_next7 <= next7; 

  r_next8 <= next8; 

  r_next9 <= next9; 

  r_next10 <= next10; 

  r_next11 <= next11; 

  r_next12 <= next12; 

  r_next13 <= next13; 

  r_next14 <= next14; 

  r_next15 <= next15; 

 

 end 

endmodule 

 

module cross_unit(a, b, sel, CLK, w, x, y, z); 

 parameter n=14; 

 input [n-1:0] a, b, sel; 

 input CLK; 

 output [n-1:0] w, x, y, z; 

 reg [n-1:0] w, x, y, z; 

 wire [n-1:0] c, d; 

 defparam c1.n=n; 

 crossckt c1(a, b, sel, c, d); 

  

 always @(posedge CLK) 

 begin 

  w <= a; 

  x <= b; 

  y <= c; 

  z <= d; 

 end 

endmodule 

  

 

 

module bit_swap_B(a, b, ctrl, aprime, bprime); 

 //If ctrl==1 then swap a and b 

 input a, b; 

 input ctrl; 
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 output aprime, bprime; 

 reg aprime, bprime; 

  

 always @(a, b, ctrl) 

 begin 

  aprime <= ctrl?b:a; 

  bprime <= ctrl?a:b; 

 end 

endmodule 

 

 

module mux16to1B(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, sel, Q); 

 parameter n=14; 

 input [n-1:0] A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P; 

 input [3:0] sel; 

 output [n-1:0] Q; 

 reg [n-1:0] Q; 

  

 always @(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, sel) 

  case (sel) 

   0: Q<=A; 

   1: Q<=B; 

   2: Q<=C; 

   3: Q<=D; 

   4: Q<=E; 

   5: Q<=F; 

   6: Q<=G; 

   7: Q<=H; 

   8: Q<=I; 

   9: Q<=J; 

   10: Q<=K; 

   11: Q<=L; 

   12: Q<=M; 

   13: Q<=N; 

   14: Q<=O; 

   15: Q<=P; 

   default: Q<=A; 

  endcase 

endmodule 

 

module crossckt(a, b, ctrl, aprime, bprime); 

 parameter n=8; 
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 input [n-1:0] a, b, ctrl; 

 output [n-1:0] aprime, bprime; 

 wire [n-1:0] aprime, bprime; 

  

 genvar k; 

 generate 

  for (k=0; k<n; k=k+1) 

  begin: ea_bit 

   bit_swap_B bs(a[k], b[k], ctrl[k], aprime[k], bprime[k]); 

  end 

 endgenerate 

endmodule 

 

module sel_cross(crc_adr, CLK, EN, reset, val); 

  input [8:0] crc_adr; 

        input CLK, EN, reset; 

        output [31:0] val; 

        wire [31:0] val; 

        reg [7:0] adr; 

         

        reg [7:0] sel_adr; 

         

        crossover_mut_rom machine(sel_adr, val); 

         

        always @(crc_adr, adr) 

         sel_adr <= crc_adr[0]?crc_adr[8:1]:adr; 

         

        always @(posedge CLK) 

        begin 

                if (reset) 

                        adr<=256'd0; 

                else 

      adr<=adr+EN; 

        end 

endmodule 

 

module crossover_mut_rom(adr, val); 

 //Creates a ROM to control crossover and mutation 

 input [7:0] adr; 

 output [31:0] val; 

 reg [31:0] val; 

 always @(adr) 
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 begin 

  case (adr) 

   0: val=32'b00000001001100101000011001001110; 

   1: val=32'b00100011010001011001110001111011; 

   2: val=32'b01000110000000110001011110001100; 

   3: val=32'b01000110110001010010001110011011; 

   4: val=32'b00110110010000100101100100000111; 

   5: val=32'b11000111000010110101010000110001; 

   6: val=32'b01001110001110010010100001110000; 

   7: val=32'b00000110100001010100111100100011; 

   8: val=32'b00000111000100101010010100110110; 

   9: val=32'b01111010010001010010101100001000; 

   10: val=32'b00101001011000110101111000011011; 

   11: val=32'b11000110000110100100001001011001; 

   12: val=32'b00010111101100100011010111011110; 

   13: val=32'b00100011010101101110000000010111; 

   14: val=32'b01100010001101010000011100010100; 

   15: val=32'b01110100100000010110100100110000; 

   16: val=32'b01010001000011001001001101000111; 

   17: val=32'b00010100001110100010000001100101; 

   18: val=32'b10111010011100100100001110000101; 

   19: val=32'b00010101001001001010001111000110; 

   20: val=32'b11000110100101011000001101000001; 

   21: val=32'b00000010111010101000010001100101; 

   22: val=32'b00101100011010010101010000011010; 

   23: val=32'b01010010110101000000011100110110; 

   24: val=32'b01111011001111000100001001100000; 

   25: val=32'b10011110101101010100110011010010; 

   26: val=32'b00000111000110001110010110111111; 

   27: val=32'b00001001100000110010011100010101; 

   28: val=32'b00001101000101111111100011100011; 

   29: val=32'b11000010111000010011010110100111; 

   30: val=32'b01000110010100011111001000110000; 

   31: val=32'b00110010000001000001101110101001; 

   32: val=32'b01010110110010010000001101110001; 

   33: val=32'b11110000101110000101110110010100; 

   34: val=32'b00111100001000010111010001101011; 

   35: val=32'b10000111000001101001000101000101; 

   36: val=32'b01110110000010000001001010100100; 

   37: val=32'b00011111101101001101001000110101; 

   38: val=32'b01010000000101110011111001100010; 

   39: val=32'b11000101111000010011001010110111; 
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   40: val=32'b01001000000110110011100101110101; 

   41: val=32'b00011000010100001101011010011010; 

   42: val=32'b01110011100010110101010000000010; 

   43: val=32'b00101000001101010000101101110100; 

   44: val=32'b00010110001101010100101001111100; 

   45: val=32'b11110100010100110000101000100110; 

   46: val=32'b00100101000011100110010000011100; 

   47: val=32'b00110001110110110010010110000000; 

   48: val=32'b00011110100101100101001100001010; 

   49: val=32'b01010100001111010001000010000010; 

   50: val=32'b01000000001010100110010100011011; 

   51: val=32'b01101100001010010101000101001000; 

   52: val=32'b00000111000110010100101110000010; 

   53: val=32'b01010100001100000010000110011100; 

   54: val=32'b00100001000010000110101011001001; 

   55: val=32'b01100011010111010111000010111100; 

   56: val=32'b01010100000000110010100110000111; 

   57: val=32'b01110000010000011001001101101101; 

   58: val=32'b01001010001000011001010100110110; 

   59: val=32'b00000100001011100011100111010001; 

   60: val=32'b00100101000011000110011110110011; 

   61: val=32'b01110010101001000101001110010000; 

   62: val=32'b01110110001000011110001101010000; 

   63: val=32'b00101011000110100110001111001110; 

   64: val=32'b10110011001010101100000001100001; 

   65: val=32'b01110001001001101010010000111001; 

   66: val=32'b10100011000000010101011011001001; 

   67: val=32'b00000110110001010011011110010100; 

   68: val=32'b00000101100001110110001100011001; 

   69: val=32'b00100001000010010111100001011111; 

   70: val=32'b00011001100001100101101100110010; 

   71: val=32'b00110110101001110010010110010001; 

   72: val=32'b11100001010000100011100101111011; 

   73: val=32'b01100001000010010111111000110101; 

   74: val=32'b10000101110101100000001000110111; 

   75: val=32'b11000100011000101000000010101110; 

   76: val=32'b10010110000010100111001000011000; 

   77: val=32'b10010110001101010100000110000111; 

   78: val=32'b00001100001100101000010100010111; 

   79: val=32'b11100110011100011101101100111010; 

   80: val=32'b01011000100101001101000000111010; 

   81: val=32'b00000010101100110101110010010001; 



 127

   82: val=32'b10100011000000100110110001010100; 

   83: val=32'b00100000000101111100101001101000; 

   84: val=32'b01100001010001110011000010001011; 

   85: val=32'b11111110010001111000001110010110; 

   86: val=32'b01000000010101101000011100010011; 

   87: val=32'b11001001101000100000101100010111; 

   88: val=32'b01000011101110010000100010100010; 

   89: val=32'b01000111010100101000101110100011; 

   90: val=32'b10111001011101010011000001000010; 

   91: val=32'b01100010000010010011100000010101; 

   92: val=32'b10010101000000011101001001100111; 

   93: val=32'b10010000000100111000001011111011; 

   94: val=32'b01010111101010111100111100111000; 

   95: val=32'b00101011010010010011110110100000; 

   96: val=32'b10100010111001110011010010000000; 

   97: val=32'b11100100110100000011000101011100; 

   98: val=32'b00111101011101011000001001001100; 

   99: val=32'b00101010010000001001001101010111; 

   100: val=32'b00110100111000001000001001101010; 

   101: val=32'b01010000001110001001001001000110; 

   102: val=32'b01110100111100101010100000011100; 

   103: val=32'b10000011000000010110001010101001; 

   104: val=32'b00101100100001001010101110011111; 

   105: val=32'b00100100011101101110100000000001; 

   106: val=32'b10010101001001000000011010100111; 

   107: val=32'b00100000101001000110000110000101; 

   108: val=32'b00100000011001110100111100011011; 

   109: val=32'b11100001001100100111011010111010; 

   110: val=32'b01000110001100000001100101111010; 

   111: val=32'b00001111000110101100001101100010; 

   112: val=32'b00110100100001010000101001110001; 

   113: val=32'b10000001011101011100000010110010; 

   114: val=32'b10100011000101010010000011010100; 

   115: val=32'b10100101011101100011010000000010; 

   116: val=32'b00110100101000101011000000011101; 

   117: val=32'b10000011011000000010101110010101; 

   118: val=32'b00111100011100101000000000011001; 

   119: val=32'b00000110011110010010000100110100; 

   120: val=32'b10010100000000010111011010111010; 

   121: val=32'b00000001100100110100001011001011; 

   122: val=32'b10000000001110100001011101011001; 

   123: val=32'b00000001101100110111010000101000; 
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   124: val=32'b01010010010010000000011010010001; 

   125: val=32'b00111001011101001100010110100010; 

   126: val=32'b01100011101000010111110000001000; 

   127: val=32'b01100011010100100100011111011010; 

   128: val=32'b00010100011001010000001101110010; 

   129: val=32'b00000101001001110100100110100110; 

   130: val=32'b01010110000111001010101110011101; 

   131: val=32'b01110010100100000001010101101000; 

   132: val=32'b10000011011011001101001010111001; 

   133: val=32'b01111000001101100101000010010100; 

   134: val=32'b00000100000100111000001010110110; 

   135: val=32'b01011000011110010000011001000010; 

   136: val=32'b10100001001001011100011000000011; 

   137: val=32'b01011001011100100011010001100001; 

   138: val=32'b11000011100000010101001010010100; 

   139: val=32'b00100001011110101001010111001110; 

   140: val=32'b00100011000001110110101101011100; 

   141: val=32'b10111000000101010100011100110010; 

   142: val=32'b01000000001110010111010110000001; 

   143: val=32'b01010010100101001100111100011000; 

   144: val=32'b00000111001101100100000101011100; 

   145: val=32'b01101101100000010011010101001001; 

   146: val=32'b01011010001101110010000100001101; 

   147: val=32'b10000001010000110010100101010000; 

   148: val=32'b00010011001001001000000010100101; 

   149: val=32'b10010011010000100001010110100111; 

   150: val=32'b01100011001000000100010100011010; 

   151: val=32'b00010010011101101100111010011010; 

   152: val=32'b11010101001000001011010000110001; 

   153: val=32'b01010111000010110010111101000110; 

   154: val=32'b00001000001101000001011101011100; 

   155: val=32'b01001110000000011001101101011010; 

   156: val=32'b10101000010001010001000000100110; 

   157: val=32'b11010000110001011110000100100110; 

   158: val=32'b11010001011111001001011010000101; 

   159: val=32'b10010001001110100000001011000100; 

   160: val=32'b00100111000111101100011000110101; 

   161: val=32'b01100001000001000101110101111000; 

   162: val=32'b00100000010111001010010001100111; 

   163: val=32'b00011100100101001011111101010010; 

   164: val=32'b01110000100001010001101101000011; 

   165: val=32'b01110101101101100011001000001010; 
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   166: val=32'b00100110000001001000001110110111; 

   167: val=32'b01010000101101110100100100110001; 

   168: val=32'b00110010000100001011011001001001; 

   169: val=32'b00000100100000110010010101101100; 

   170: val=32'b00100111001101000110100100001000; 

   171: val=32'b00110000000110010101011100101110; 

   172: val=32'b00100101000000011011100001100011; 

   173: val=32'b00000101011010001100100110110001; 

   174: val=32'b01001000001000001100001100010101; 

   175: val=32'b00101001001101000000011111000101; 

   176: val=32'b00010111011000110101010011011010; 

   177: val=32'b00100111000100000011011001001000; 

   178: val=32'b00100001011101001000010101101010; 

   179: val=32'b11000011100110100010010101000000; 

   180: val=32'b00010010000010001010011100110100; 

   181: val=32'b00000001001010010110010010000101; 

   182: val=32'b00100101000110011100010010000111; 

   183: val=32'b00011111100001001001001110100101; 

   184: val=32'b11000100100001110010000101100101; 

   185: val=32'b10010100000010000011110100100001; 

   186: val=32'b10100001001000000111101101010110; 

   187: val=32'b11010100001111110010000010100101; 

   188: val=32'b00010110010010000010011101011110; 

   189: val=32'b11010001011110010101001111001000; 

   190: val=32'b10001001000000100101000101000011; 

   191: val=32'b00011100011010100000001000110100; 

   192: val=32'b00011000011001000111000010010010; 

   193: val=32'b00010110011101001000100101011010; 

   194: val=32'b00111001001000000110011100011010; 

   195: val=32'b00011100011100100000011010100100; 

   196: val=32'b01110100000101010011011000000010; 

   197: val=32'b00010100001110010000101001101000; 

   198: val=32'b11000000011010110100100100011010; 

   199: val=32'b00111101100001110010010101101110; 

   200: val=32'b01000101000110000000001100101011; 

   201: val=32'b00001011010100010010011000111110; 

   202: val=32'b00101010000111010100011101101001; 

   203: val=32'b10100100000010000111001010111111; 

   204: val=32'b01100001010110010011000001001101; 

   205: val=32'b00011010011110001001011000100011; 

   206: val=32'b01010010100001100011110101000001; 

   207: val=32'b00010010100101001011001101011111; 
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   208: val=32'b00010110010000101101000010001100; 

   209: val=32'b10100110010110001100000000110100; 

   210: val=32'b01000000101101111100000111010011; 

   211: val=32'b00111010010000000010000111110110; 

   212: val=32'b00010111001101000101101011010000; 

   213: val=32'b11010110010110010001000001001100; 

   214: val=32'b01110100001010100000000110111000; 

   215: val=32'b01011011000010010010110000111101; 

   216: val=32'b10010000001001010011010000011011; 

   217: val=32'b10000011011100100101000000011100; 

   218: val=32'b10001101000001000001001001010011; 

   219: val=32'b10010100101100011101101010000000; 

   220: val=32'b00010100011010100000011110000010; 

   221: val=32'b00110101010010000000101101100001; 

   222: val=32'b00100001001101100000111010000101; 

   223: val=32'b01101011010100000001010001111000; 

   224: val=32'b01000001000001011111101001100111; 

   225: val=32'b00000111001010011010000101000101; 

   226: val=32'b00100111101001000011000110001100; 

   227: val=32'b00001001000110100101011000100011; 

   228: val=32'b10010001001000110100110101111011; 

   229: val=32'b01011010000001100100111100100011; 

   230: val=32'b01000101000100001010110001111001; 

   231: val=32'b11000001001001111011010100110100; 

   232: val=32'b10101001010001100011101101010000; 

   233: val=32'b00100001101110001001001101010110; 

   234: val=32'b10110010001100001001010001111100; 

   235: val=32'b00001011100011010011010001011010; 

   236: val=32'b01001011000000100111010111000110; 

   237: val=32'b01100000001010100100101101111111; 

   238: val=32'b01101010001100010111001010000101; 

   239: val=32'b01100000011100110101000101001010; 

   240: val=32'b00000011010010000010000101010110; 

   241: val=32'b00110101111000101000011100001011; 

   242: val=32'b00010011110101100101000001001000; 

   243: val=32'b01110001100101010011101101001000; 

   244: val=32'b11000011010110010001101101100100; 

   245: val=32'b00000101001010011000101110101101; 

   246: val=32'b00111101100100100001101001100101; 

   247: val=32'b10100000000100110010010001101001; 

   248: val=32'b11010000011001000101101000011001; 

   249: val=32'b00100011010110000111000001000001; 
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   250: val=32'b00010000101000101110001101111111; 

   251: val=32'b01010011100000001011010001100111; 

   252: val=32'b10111000000101010010011001111010; 

   253: val=32'b00010010010000001100001101111001; 

   254: val=32'b11000011010000001001010101111011; 

   255: val=32'b00110100100000010010110001010111; 

   default: val=32'd0; 

  endcase 

 end 

endmodule 

 

module dff_cseNB(d, CLR, SET, EN, CLK, q); 

 parameter n=32; 

 input [n-1:0] d; 

 input CLR, SET, EN, CLK; 

 output [n-1:0] q; 

 reg [n-1:0] q; 

 always @(posedge CLR or posedge SET or posedge CLK or posedge EN) 

  if (CLR) 

   q<={n{1'b0}}; 

  else if (SET) 

   q<={n{1'b1}}; 

  else if (EN) 

   q<=d; 

endmodule 

 

module dff_eNB(d, EN, CLK, q); 

 parameter n=16; 

 input [n-1:0] d; 

 input EN, CLK; 

 output [n-1:0] q; 

 reg [n-1:0] q; 

 always @(posedge CLK) 

  if (EN) 

   q<=d; 

endmodule 

 

module mux2to1B(A, B, sel, Q); 

 parameter n=32; 

 input [n-1:0] A, B; 

 input sel; 

 output [n-1:0] Q; 
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 reg [n-1:0] Q; 

  

 always @(A, B, sel) 

  case (sel) 

   0: Q<=A; 

   1: Q<=B; 

   default: Q<=A; 

  endcase 

endmodule 

 

module dff_ceNB(d, CLR, EN, CLK, q); 

 parameter n=16; 

 input [n-1:0] d; 

 input CLR, EN, CLK; 

 output [n-1:0] q; 

 reg [n-1:0] q; 

 always @(posedge CLK or posedge CLR) 

 begin 

  if (CLR) 

   q <= {16{1'b0}}; 

  else if (EN) 

   q <= d; 

 end 

endmodule   

 

module MutAdr(inc, CLK, CLR, VALID, ITER, adr); 

 parameter n=8; 

 input inc, CLK, CLR, VALID, ITER; 

 output [7:0] adr; 

 wire [7:0] adr; 

 wire [7:0] qsum; 

 reg [7:0] sum; 

  

 defparam outmux.n=n; 

 mux2to1B outmux(sum, {n{1'b0}}, CLR, adr); 

 

 defparam ff.n=n; 

 dff_eNB ff(sum, VALID&ITER, CLK, qsum); 

  

 always @(inc or adr) 

  sum <= inc + adr; 

endmodule 
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module MutRom(ADR, val); 

 input [7:0] ADR; 

 output [24:0] val; 

 reg [24:0] val; 

 //Format:  7 bits of 0-run length, wid_TT bits of mutator, 4 bits of which 
element selection. 

 

 always @(ADR) 

 begin 

  case (ADR) 

   0: val=25'b0000010000000001000000011; 

   1: val=25'b0000001000000000000001001; 

   2: val=25'b1111111000001001000001000; 

   3: val=25'b0011101000000000000000010; 

   4: val=25'b0010001000000000000000000; 

   5: val=25'b0010100011000110100100000; 

   6: val=25'b0110010010000001100001100; 

   7: val=25'b1111111000000000000000001; 

   8: val=25'b0011010000000101001001010; 

   9: val=25'b0100010000010000000001010; 

   10: val=25'b0110101001000000001001110; 

   11: val=25'b0000110000000000000011110; 

   12: val=25'b1100011000010000000101111; 

   13: val=25'b1111111000000000000001110; 

   14: val=25'b0001110001101000000000001; 

   15: val=25'b1110011010000100100010001; 

   16: val=25'b0110100010001001000010110; 

   17: val=25'b0100111000010100000001001; 

   18: val=25'b1101011100000000001000011; 

   19: val=25'b1110001001000000000001100; 

   20: val=25'b0111011000001000000101100; 

   21: val=25'b1111111000000000000001101; 

   22: val=25'b0100001000100000100000101; 

   23: val=25'b0000111000000000010001111; 

   24: val=25'b1111111000000000000000011; 

   25: val=25'b1111111000000000000001001; 

   26: val=25'b1010101000000000000001000; 

   27: val=25'b1011000000001000000001010; 

   28: val=25'b1111111000000000000000111; 

   29: val=25'b1111111000000000000001010; 

   30: val=25'b0001100000000000000001100; 
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   31: val=25'b0111111000101100000000010; 

   32: val=25'b1111111000000000000000001; 

   33: val=25'b0111101000010000001000010; 

   34: val=25'b1111111000000000000000101; 

   35: val=25'b1011000100000000001001000; 

   36: val=25'b0100001001000011000010000; 

   37: val=25'b0010101000000000000101000; 

   38: val=25'b0100010100101000000101101; 

   39: val=25'b1111111000000000000000110; 

   40: val=25'b0101100000010010000000101; 

   41: val=25'b0000001000000000001000000; 

   42: val=25'b0100110000000000000000000; 

   43: val=25'b1000000000000000000011011; 

   44: val=25'b1110010100000100000001111; 

   45: val=25'b0000000000100000000001100; 

   46: val=25'b0010110000001000000010100; 

   47: val=25'b1011101000001000000001001; 

   48: val=25'b0111111000000000000001000; 

   49: val=25'b0111010000010000000000011; 

   50: val=25'b1111111000000000000001001; 

   51: val=25'b1111111000000000000001100; 

   52: val=25'b0001100010000100000001110; 

   53: val=25'b0011000001001000100000001; 

   54: val=25'b1111010000000000000000001; 

   55: val=25'b0010011000000000000001101; 

   56: val=25'b0111000001000000001010101; 

   57: val=25'b1110111000000000000001111; 

   58: val=25'b1011010000000000000000000; 

   59: val=25'b0100111000001000000001000; 

   60: val=25'b1111111000000000000001011; 

   61: val=25'b1111111000000000000000011; 

   62: val=25'b1111111000000000000000110; 

   63: val=25'b0011101010000100010001011; 

   64: val=25'b1111111000000000000001101; 

   65: val=25'b1111111000000000000001011; 

   66: val=25'b0111000100000100000101011; 

   67: val=25'b0001000000001000000000000; 

   68: val=25'b1111111000000000000001001; 

   69: val=25'b0100110010100100000000110; 

   70: val=25'b0100001010000000000001011; 

   71: val=25'b0100011001000000000001011; 

   72: val=25'b0111001000000100000110100; 
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   73: val=25'b0110000000001000100000100; 

   74: val=25'b0000011000000000000010010; 

   75: val=25'b1111111000000000000001000; 

   76: val=25'b0000101000000010000001111; 

   77: val=25'b1111111000000000000001111; 

   78: val=25'b0100001001000000000001011; 

   79: val=25'b1111111000000000000001111; 

   80: val=25'b0101010000000000000000100; 

   81: val=25'b0010101010000000000001001; 

   82: val=25'b1111111000000000000000101; 

   83: val=25'b1011101000000000110011001; 

   84: val=25'b0001111000000000100100101; 

   85: val=25'b1111111000000000000000111; 

   86: val=25'b0011101000000000000000101; 

   87: val=25'b1111111000000000000000111; 

   88: val=25'b1111111000000000000000111; 

   89: val=25'b1111111000000000000001110; 

   90: val=25'b0101011000001000001100011; 

   91: val=25'b1110011001000010101000001; 

   92: val=25'b0111110000000000000001011; 

   93: val=25'b1111111000000000000001101; 

   94: val=25'b0001010001100000000101110; 

   95: val=25'b0110010000001000000001100; 

   96: val=25'b1001100000000000000001111; 

   97: val=25'b0011000010000001000011011; 

   98: val=25'b0001111001000000000000010; 

   99: val=25'b0001100000100000001100000; 

   100: val=25'b1111111000000000000000100; 

   101: val=25'b0001011100100100000000010; 

   102: val=25'b0010000000000001000001100; 

   103: val=25'b0010100000000001000101001; 

   104: val=25'b1111111000000000000000000; 

   105: val=25'b0101100000000100010001100; 

   106: val=25'b0000000010000010000001100; 

   107: val=25'b0001101000000000000001011; 

   108: val=25'b1111010000000000000000101; 

   109: val=25'b0110110000000000000001101; 

   110: val=25'b0101101100001000000111011; 

   111: val=25'b1111111000000000000001011; 

   112: val=25'b1111111000000000000000010; 

   113: val=25'b1100011000000000100000001; 

   114: val=25'b0011011000000000000001110; 
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   115: val=25'b1111111000000000000001010; 

   116: val=25'b0011101000000000000001001; 

   117: val=25'b0110010000000000010000111; 

   118: val=25'b1111111000000000000001011; 

   119: val=25'b1111111000000000000000110; 

   120: val=25'b1100100000001000010000001; 

   121: val=25'b0010010000000100000001110; 

   122: val=25'b1101011000000000110001001; 

   123: val=25'b1000001000000000000001100; 

   124: val=25'b1000100100100001000001110; 

   125: val=25'b0101001000100100001101111; 

   126: val=25'b1111111000000000000001101; 

   127: val=25'b0010001000000000000000000; 

   128: val=25'b1111111000000000000001111; 

   129: val=25'b0001001000010000000101010; 

   130: val=25'b0001011010000000001000011; 

   131: val=25'b0101100000000000001000001; 

   132: val=25'b0001110010000000000010111; 

   133: val=25'b0010100000000010000000101; 

   134: val=25'b1010010001000000000001011; 

   135: val=25'b1001100000000000000000101; 

   136: val=25'b0011101000000010010001111; 

   137: val=25'b1001001000000000100000010; 

   138: val=25'b0000001000001000000010101; 

   139: val=25'b1110000000100001000001100; 

   140: val=25'b0100100000100001000001010; 

   141: val=25'b0000101001000000000110000; 

   142: val=25'b0110111000000000000001111; 

   143: val=25'b1111111000000000000000100; 

   144: val=25'b1111111000000000000001010; 

   145: val=25'b1111111000000000000000101; 

   146: val=25'b0110011000000000000001101; 

   147: val=25'b1111111000000000000001001; 

   148: val=25'b0011011000000001000000010; 

   149: val=25'b0111110100000000000001010; 

   150: val=25'b1001000000001100000001000; 

   151: val=25'b0010010000000000000001111; 

   152: val=25'b0111101000000001000101100; 

   153: val=25'b0010110000000000010101000; 

   154: val=25'b0001101000000000000001011; 

   155: val=25'b1011110100001000000000010; 

   156: val=25'b0010000010000001000001100; 
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   157: val=25'b0011101000000001000000001; 

   158: val=25'b0110101000000000100001011; 

   159: val=25'b0111100100000000000011110; 

   160: val=25'b0111110000000100000000101; 

   161: val=25'b0011001000000000001000001; 

   162: val=25'b0110000010001001000000110; 

   163: val=25'b1011001001000000100001010; 

   164: val=25'b1100100000010000010001100; 

   165: val=25'b0100010000000111000100110; 

   166: val=25'b1010001000000010000001110; 

   167: val=25'b1001001000000000000001010; 

   168: val=25'b1111111000000000000001010; 

   169: val=25'b0111101000010000000001101; 

   170: val=25'b1111111000000000000000110; 

   171: val=25'b1111111000000000000000101; 

   172: val=25'b1000100000000100000000111; 

   173: val=25'b0101111010001000000000000; 

   174: val=25'b1001100000000100000001101; 

   175: val=25'b1111111000000000000000100; 

   176: val=25'b1111111000000000000000100; 

   177: val=25'b0010001000000000000001101; 

   178: val=25'b1111111000000000000001001; 

   179: val=25'b0010111000000000000101100; 

   180: val=25'b0100001000000000000001000; 

   181: val=25'b1000101000000001000010111; 

   182: val=25'b0001100000000010000000111; 

   183: val=25'b1000100000000000000001101; 

   184: val=25'b0101100011001010000001110; 

   185: val=25'b0010011100000100001000010; 

   186: val=25'b0000100000000100000000001; 

   187: val=25'b1100111000000000000001011; 

   188: val=25'b1010111000000001100001110; 

   189: val=25'b0001001001000100001011011; 

   190: val=25'b0100001000000000000001111; 

   191: val=25'b1111111000000000000001101; 

   192: val=25'b0010100000000011000011001; 

   193: val=25'b0001100001000001000100111; 

   194: val=25'b1111111000000000000000010; 

   195: val=25'b1111111000000000000000101; 

   196: val=25'b0001001000000000000001010; 

   197: val=25'b0000010000010000010011101; 

   198: val=25'b1110110000000001000001110; 
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   199: val=25'b1000111001001000000001111; 

   200: val=25'b1111111000000000000001010; 

   201: val=25'b0100100000000000000010110; 

   202: val=25'b1111111000000000000000110; 

   203: val=25'b0000111000001000000101101; 

   204: val=25'b0111110000000000000000011; 

   205: val=25'b0010010000000000010000011; 

   206: val=25'b1001100000000000000001101; 

   207: val=25'b0110001000000000000010001; 

   208: val=25'b0010001100000010100001000; 

   209: val=25'b0100000000011000000001111; 

   210: val=25'b0111011000000000000011011; 

   211: val=25'b1111111000000000000001100; 

   212: val=25'b0101000100000000000100011; 

   213: val=25'b1110001001000000000000111; 

   214: val=25'b0111011000000000000001110; 

   215: val=25'b1111111000000000000000110; 

   216: val=25'b0110101000001000000000000; 

   217: val=25'b0100111000000000001000111; 

   218: val=25'b0000010000000001000000010; 

   219: val=25'b0001010000000000000001111; 

   220: val=25'b0000010000100000100001010; 

   221: val=25'b1111111000000000000000110; 

   222: val=25'b1110010000000000000000010; 

   223: val=25'b1111111000000000000000110; 

   224: val=25'b1111111000000000000000011; 

   225: val=25'b1111111000000000000000100; 

   226: val=25'b1111111000000000000000000; 

   227: val=25'b0011001000000000000001000; 

   228: val=25'b1111111000000000000001000; 

   229: val=25'b0101100000000000000000011; 

   230: val=25'b1001111000000010100000010; 

   231: val=25'b0111100000000000000001011; 

   232: val=25'b1111100000000000000000101; 

   233: val=25'b0001000000000000010000100; 

   234: val=25'b1101111000000010000001110; 

   235: val=25'b0101010000000000000001011; 

   236: val=25'b0010001000100010000000101; 

   237: val=25'b0011111100000000000000011; 

   238: val=25'b0011000000000100010001000; 

   239: val=25'b0010010001001000000000100; 

   240: val=25'b1001010100000000000001110; 
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   241: val=25'b1001101000100000000000101; 

   242: val=25'b0011101000000000000001011; 

   243: val=25'b0011100000100000000000001; 

   244: val=25'b1111111000000000000001100; 

   245: val=25'b1001011000000000000000001; 

   246: val=25'b1111111000000000000000101; 

   247: val=25'b0100000000000000000000100; 

   248: val=25'b0000000000001000000001011; 

   249: val=25'b0011100000110000001001100; 

   250: val=25'b1010010010000000001000111; 

   251: val=25'b1111111000000000000000110; 

   252: val=25'b0101111000000000000001001; 

   253: val=25'b0000110010011000000011001; 

   254: val=25'b0100011000000000000101011; 

   255: val=25'b1110111000000000000000001; 

   default: val=25'd0; 

  endcase 

 end 

endmodule 

 

module incer(val, CLR, EN, CLK, out); 

 parameter n=8; 

 input val, CLR, EN, CLK; 

 output [n-1:0] out; 

 reg [n-1:0] out; 

 always @(posedge CLK or posedge CLR) 

  if (CLR) 

   out <= {n{1'b0}}; 

  else if (EN) 

   out <= out + val; 

endmodule 

 

module muter(crc_adr, CLR, VALID, ITER, CLK, r_mutout); 

 parameter wrom=25;  //number of bits in ROM lines, equals {7'Zeros run, 
14'Mutation code, 4'element selection} 

 parameter alines=8; //number of bits in ROM address line 

 parameter maxrun=7; //number of bits in countre 

  

 input [8:0] crc_adr; 

 input CLR, VALID, ITER, CLK; 

 output [17:0] r_mutout; 

 reg [17:0] r_mutout; 
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 wire [17:0] mutout; 

 

 wire [wrom-1:0] romout; 

 wire w_isnequal; 

 wire [alines-1:0] wq_adr; 

 wire [maxrun-1:0] wq_ctr; 

 reg r_isequal, d_isequal; 

  

 reg [7:0] rom_adr; 

   

 assign w_isnequal = ~r_isequal; 

 

 defparam inc_ctr.n=maxrun; 

 

 incer inc_ctr(~r_isequal, d_isequal|CLR, VALID&ITER, CLK, wq_ctr); 

 

 always @(wq_ctr, romout[wrom-1:wrom-maxrun]) 

  r_isequal <= wq_ctr == romout[wrom-1:wrom-maxrun]; 

  

 always @(posedge CLK)// or posedge CLR) 

 begin 

   d_isequal <= r_isequal; 

   r_mutout <= mutout; 

 end 

  

 defparam inc_adr.n=alines; 

 incer inc_adr(d_isequal, CLR, VALID&ITER, CLK, wq_adr); 

  

 always @(crc_adr, wq_adr) 

  rom_adr <= crc_adr[0]?crc_adr[8:1]:wq_adr; 

  

 MutRom mr(rom_adr, romout); 

  

 defparam m_mutout.n=wrom-maxrun; 

 mux2to1B m_mutout({(wrom-maxrun){1'b0}}, romout[(wrom-maxrun-1):0], 
r_isequal, mutout); 

  

endmodule 

 

module crossmut(w_sort0, w_sort1, w_sort2, w_sort3, w_sort4, w_sort5, w_sort6, 
w_sort7, w_sort8, w_sort9, w_sort10, w_sort11, w_sort12, w_sort13, w_sort14, w_sort15, 
crc_adr, crosscode, CLR, VALID, ITER, CLK, r_mout0, r_mout1, r_mout2, r_mout3, r_mout4, 
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r_mout5, r_mout6, r_mout7, r_mout8, r_mout9, r_mout10, r_mout11, r_mout12, r_mout13, 
r_mout14, r_mout15); 

 parameter wid_TT=14; 

 parameter wid_fit=8; 

 

 input [21:0] w_sort0, w_sort1, w_sort2, w_sort3, w_sort4, w_sort5, 
w_sort6, w_sort7, w_sort8, w_sort9, w_sort10, w_sort11, w_sort12, w_sort13, w_sort14, 
w_sort15; 

 

 input [8:0] crc_adr; 

 input [13:0] crosscode; 

 //crc adr has the format of 8:1 adr lines, 0 control line 

 input CLR; 

 input VALID, ITER; 

 input CLK /* synthesis syn_noclockbuf=1 syn_maxfan=100000 */; 

 output [13:0] r_mout0, r_mout1, r_mout2, r_mout3, r_mout4, r_mout5, 
r_mout6, r_mout7, r_mout8, r_mout9, r_mout10, r_mout11, r_mout12, r_mout13, r_mout14, 
r_mout15; 

 reg [13:0] r_mout0, r_mout1, r_mout2, r_mout3, r_mout4, r_mout5, r_mout6, 
r_mout7, r_mout8, r_mout9, r_mout10, r_mout11, r_mout12, r_mout13, r_mout14, r_mout15; 

 wire [13:0] w_mout0, w_mout1, w_mout2, w_mout3, w_mout4, w_mout5, w_mout6, 
w_mout7, w_mout8, w_mout9, w_mout10, w_mout11, w_mout12, w_mout13, w_mout14, w_mout15; 

 wire [13:0] w_out0, w_out1, w_out2, w_out3, w_out4, w_out5, w_out6, 
w_out7, w_out8, w_out9, w_out10, w_out11, w_out12, w_out13, w_out14, w_out15; 

 

 wire [31:0] sel; 

  

 wire [wid_TT-1:0] w_m0, w_m1, w_m2, w_m3, w_m4, w_m5, w_m6, w_m7; 

 reg [wid_TT-1:0] r_m0, r_m1, r_m2, r_m3, r_m4, r_m5, r_m6, r_m7; 

  

 reg w_selmut0, w_selmut1, w_selmut2, w_selmut3, w_selmut4, w_selmut5, 
w_selmut6, w_selmut7, w_selmut8, w_selmut9, w_selmut10, w_selmut11, w_selmut12, 
w_selmut13, w_selmut14, w_selmut15; 

 reg [13:0] w_muted0, w_muted1, w_muted2, w_muted3, w_muted4, w_muted5, 
w_muted6, w_muted7, w_muted8, w_muted9, w_muted10, w_muted11, w_muted12, w_muted13, 
w_muted14, w_muted15; 

 

 //sel_cross(CLK, EN, reset, val); 

 sel_cross selx(crc_adr, CLK, VALID&ITER, CLR, sel); 

  

  

 //wire [wid_TT-1:0] crosscode; 

 //assign crosscode = 14'b11111111100000; 

 //assign crosscode = 14'b00000011111111; 

 

 wire [17:0] w_mutout; 

 //muter(CLR, VALID, ITER, CLK, r_mutout); 
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 muter mtr(crc_adr, CLR, VALID, ITER, CLK, w_mutout); 

   

 defparam m0.n=wid_TT; 

 defparam m1.n=wid_TT; 

 defparam m2.n=wid_TT; 

 defparam m3.n=wid_TT; 

 defparam m4.n=wid_TT; 

 defparam m5.n=wid_TT; 

 defparam m6.n=wid_TT; 

 defparam m7.n=wid_TT; 

 mux16to1B m0(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit], 
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit], 
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit], 
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit], 
w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit], 
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit], 
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[31:28], 
w_m0); 

 mux16to1B m1(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit], 
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit], 
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit], 
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit], 
w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit], 
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit], 
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[27:24], 
w_m1); 

 mux16to1B m2(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit], 
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit], 
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit], 
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit], 
w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit], 
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit], 
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[23:20], 
w_m2); 

 mux16to1B m3(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit], 
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit], 
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit], 
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit], 
w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit], 
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit], 
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[19:16], 
w_m3); 

 mux16to1B m4(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit], 
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit], 
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit], 
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit], 
w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit], 
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit], 
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[15:12], 
w_m4); 

 mux16to1B m5(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit], 
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit], 
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit], 
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit], 
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w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit], 
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit], 
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[11:8], w_m5); 

 mux16to1B m6(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit], 
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit], 
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit], 
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit], 
w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit], 
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit], 
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[7:4], w_m6); 

 mux16to1B m7(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit], 
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit], 
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit], 
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit], 
w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit], 
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit], 
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[3:0], w_m7); 

  

 defparam mutmux0.n=wid_TT; 

 defparam mutmux1.n=wid_TT; 

 defparam mutmux2.n=wid_TT; 

 defparam mutmux3.n=wid_TT; 

 defparam mutmux4.n=wid_TT; 

 defparam mutmux5.n=wid_TT; 

 defparam mutmux6.n=wid_TT; 

 defparam mutmux7.n=wid_TT; 

 defparam mutmux8.n=wid_TT; 

 defparam mutmux9.n=wid_TT; 

 defparam mutmux10.n=wid_TT; 

 defparam mutmux11.n=wid_TT; 

 defparam mutmux12.n=wid_TT; 

 defparam mutmux13.n=wid_TT; 

 defparam mutmux14.n=wid_TT; 

 defparam mutmux15.n=wid_TT; 

 mux2to1B mutmux0(w_out0, w_muted0, w_selmut0, w_mout0); 

 mux2to1B mutmux1(w_out1, w_muted1, w_selmut1, w_mout1); 

 mux2to1B mutmux2(w_out2, w_muted2, w_selmut2, w_mout2); 

 mux2to1B mutmux3(w_out3, w_muted3, w_selmut3, w_mout3); 

 mux2to1B mutmux4(w_out4, w_muted4, w_selmut4, w_mout4); 

 mux2to1B mutmux5(w_out5, w_muted5, w_selmut5, w_mout5); 

 mux2to1B mutmux6(w_out6, w_muted6, w_selmut6, w_mout6); 

 mux2to1B mutmux7(w_out7, w_muted7, w_selmut7, w_mout7); 

 mux2to1B mutmux8(w_out8, w_muted8, w_selmut8, w_mout8); 

 mux2to1B mutmux9(w_out9, w_muted9, w_selmut9, w_mout9); 

 mux2to1B mutmux10(w_out10, w_muted10, w_selmut10, w_mout10); 

 mux2to1B mutmux11(w_out11, w_muted11, w_selmut11, w_mout11); 
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 mux2to1B mutmux12(w_out12, w_muted12, w_selmut12, w_mout12); 

 mux2to1B mutmux13(w_out13, w_muted13, w_selmut13, w_mout13); 

 mux2to1B mutmux14(w_out14, w_muted14, w_selmut14, w_mout14); 

 mux2to1B mutmux15(w_out15, w_muted15, w_selmut15, w_mout15);  

  

 defparam cu0.n=wid_TT; 

 cross_unit cu0(r_m0, r_m1, crosscode, CLK, w_out0, w_out1, w_out2, 
w_out3); 

  

 defparam cu1.n=wid_TT; 

 cross_unit cu1(r_m2, r_m3, crosscode, CLK, w_out4, w_out5, w_out6, 
w_out7); 

  

 defparam cu2.n=wid_TT; 

 cross_unit cu2(r_m4, r_m5, crosscode, CLK, w_out8, w_out9, w_out10, 
w_out11); 

  

 defparam cu3.n=wid_TT; 

 cross_unit cu3(r_m6, r_m7, crosscode, CLK, w_out12, w_out13, w_out14, 
w_out15); 

  

 always @(posedge CLK) 

 begin 

  r_m0 <= w_m0; 

  r_m1 <= w_m1; 

  r_m2 <= w_m2; 

  r_m3 <= w_m3; 

  r_m4 <= w_m4; 

  r_m5 <= w_m5; 

  r_m6 <= w_m6; 

  r_m7 <= w_m7; 

  r_mout0 <= w_mout0; 

  r_mout1 <= w_mout1; 

  r_mout2 <= w_mout2; 

  r_mout3 <= w_mout3; 

  r_mout4 <= w_mout4; 

  r_mout5 <= w_mout5; 

  r_mout6 <= w_mout6; 

  r_mout7 <= w_mout7; 

  r_mout8 <= w_mout8; 

  r_mout9 <= w_mout9; 

  r_mout10 <= w_mout10; 

  r_mout11 <= w_mout11; 

  r_mout12 <= w_mout12; 
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  r_mout13 <= w_mout13; 

  r_mout14 <= w_mout14; 

  r_mout15 <= w_mout15; 

 end 

  

 always @(*) 

 begin 

  w_selmut0 <= (0==w_mutout[3:0])?1:0; 

  w_selmut1 <= (1==w_mutout[3:0])?1:0; 

  w_selmut2 <= (2==w_mutout[3:0])?1:0; 

  w_selmut3 <= (3==w_mutout[3:0])?1:0; 

  w_selmut4 <= (4==w_mutout[3:0])?1:0; 

  w_selmut5 <= (5==w_mutout[3:0])?1:0; 

  w_selmut6 <= (6==w_mutout[3:0])?1:0; 

  w_selmut7 <= (7==w_mutout[3:0])?1:0; 

  w_selmut8 <= (8==w_mutout[3:0])?1:0; 

  w_selmut9 <= (9==w_mutout[3:0])?1:0; 

  w_selmut10 <= (10==w_mutout[3:0])?1:0; 

  w_selmut11 <= (11==w_mutout[3:0])?1:0; 

  w_selmut12 <= (12==w_mutout[3:0])?1:0; 

  w_selmut13 <= (13==w_mutout[3:0])?1:0; 

  w_selmut14 <= (14==w_mutout[3:0])?1:0; 

  w_selmut15 <= (15==w_mutout[3:0])?1:0; 

  w_muted0 = w_out0 ^ w_mutout[17:4]; 

  w_muted1 = w_out1 ^ w_mutout[17:4]; 

  w_muted2 = w_out2 ^ w_mutout[17:4]; 

  w_muted3 = w_out3 ^ w_mutout[17:4]; 

  w_muted4 = w_out4 ^ w_mutout[17:4]; 

  w_muted5 = w_out5 ^ w_mutout[17:4]; 

  w_muted6 = w_out6 ^ w_mutout[17:4]; 

  w_muted7 = w_out7 ^ w_mutout[17:4]; 

  w_muted8 = w_out8 ^ w_mutout[17:4]; 

  w_muted9 = w_out9 ^ w_mutout[17:4]; 

  w_muted10 = w_out10 ^ w_mutout[17:4]; 

  w_muted11 = w_out11 ^ w_mutout[17:4]; 

  w_muted12 = w_out12 ^ w_mutout[17:4]; 

  w_muted13 = w_out13 ^ w_mutout[17:4]; 

  w_muted14 = w_out14 ^ w_mutout[17:4]; 

  w_muted15 = w_out15 ^ w_mutout[17:4]; 

 end 

endmodule 
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module swapperN(a, b, lt, aprime, bprime); 

 parameter n=16; 

 input [n-1:0] a, b; 

 input lt; 

 output [n-1:0] aprime, bprime; 

 reg [n-1:0] aprime, bprime; 

 always @(a, b, lt) 

 begin 

  if (lt) 

  begin 

   aprime <=b; 

   bprime <=a; 

  end 

  else 

  begin 

   aprime <=a; 

   bprime <=b; 

  end 

 end 

endmodule 

 

 

module dff_NB14(d, CLK, q); 

 parameter n=14; 

 input [n-1:0] d; 

 input CLK; 

 output [n-1:0] q; 

 reg [n-1:0] q; 

 always @(posedge CLK) 

  q <= d; 

endmodule 

 

module dff_NB8(d, CLK, q); 

 parameter n=8; 

 input [n-1:0] d; 

 input CLK; 

 output [n-1:0] q; 

 reg [n-1:0] q; 

 always @(posedge CLK) 

  q <= d; 

endmodule 
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module dff_N(d, CLK, q); 

 parameter n=16; 

 input [n-1:0] d; 

 input CLK; 

 output [n-1:0] q; 

 reg [n-1:0] q; 

 

 always @(posedge CLK) 

  q <= d; 

endmodule 

 

module compare_lt(a, b, lt); 

 parameter n=8; 

 input [n-1:0] a, b; 

 output lt; 

 reg lt; 

 

 always @(a,b) 

  if (a<b) 

   lt<=1'b1; 

  else 

   lt<=1'b0; 

endmodule 

 

module sort2(a, b, aprime, bprime); 

 //Configuration of inputs {8bit index, 8bit fitness value} 

 //parameter n=16; 

 //parameter k=8; 

 parameter wid_TT=14; 

 parameter wid_fit=8; 

 input [wid_TT+wid_fit-1:0] a, b; 

 output [wid_TT+wid_fit-1:0] aprime, bprime; 

 wire [wid_TT+wid_fit-1:0] aprime, bprime; 

 wire lt; 

  

 compare_lt comp(a[wid_fit-1:0], b[wid_fit-1:0], lt); 

  

 defparam s.n=wid_TT+wid_fit; 

 swapperN s(a, b, lt, aprime, bprime); 

endmodule 

 

module sort4(a,  
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             b,  

             c,  

             CLK,  

             d,  

             aprime,  

             bprime,  

             cprime,  

             dprime); 

 

 parameter wid_TT=14; 

 parameter wid_fit=8; 

  

    input [wid_TT+wid_fit-1:0] a; 

    input [wid_TT+wid_fit-1:0] b; 

    input [wid_TT+wid_fit-1:0] c; 

    input CLK; 

    input [wid_TT+wid_fit-1:0] d; 

   output [wid_TT+wid_fit-1:0] aprime; 

   output [wid_TT+wid_fit-1:0] bprime; 

   output [wid_TT+wid_fit-1:0] cprime; 

   output [wid_TT+wid_fit-1:0] dprime; 

    

   wire [wid_TT+wid_fit-1:0] XLXN_1; 

   wire [wid_TT+wid_fit-1:0] XLXN_2; 

   wire [wid_TT+wid_fit-1:0] XLXN_3; 

   wire [wid_TT+wid_fit-1:0] XLXN_4; 

   wire [wid_TT+wid_fit-1:0] XLXN_9; 

   wire [wid_TT+wid_fit-1:0] XLXN_10; 

   wire [wid_TT+wid_fit-1:0] XLXN_11; 

   wire [wid_TT+wid_fit-1:0] XLXN_12; 

   wire [wid_TT+wid_fit-1:0] XLXN_13; 

   wire [wid_TT+wid_fit-1:0] XLXN_14; 

   wire [wid_TT+wid_fit-1:0] XLXN_15; 

   wire [wid_TT+wid_fit-1:0] XLXN_16; 

   wire [wid_TT+wid_fit-1:0] XLXN_36; 

   wire [wid_TT+wid_fit-1:0] XLXN_37; 

   wire [wid_TT+wid_fit-1:0] XLXN_40; 

   wire [wid_TT+wid_fit-1:0] XLXN_41; 

   wire [wid_TT+wid_fit-1:0] XLXN_42; 

   wire [wid_TT+wid_fit-1:0] XLXN_43; 

    

   defparam XLXI_1.n=wid_TT+wid_fit; 
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   dff_N XLXI_1 (.CLK(CLK),  

                .d(XLXN_1[wid_TT+wid_fit-1:0]),  

                .q(XLXN_9[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_2.wid_TT=wid_TT; 

 defparam XLXI_2.wid_fit=wid_fit; 

   sort2 XLXI_2 (.a(a[wid_TT+wid_fit-1:0]),  

                 .b(b[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_1[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_2[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_3.wid_TT=wid_TT; 

 defparam XLXI_3.wid_fit=wid_fit; 

   sort2 XLXI_3 (.a(c[wid_TT+wid_fit-1:0]),  

                 .b(d[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_3[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_4[wid_TT+wid_fit-1:0])); 

 

   defparam XLXI_5.n=wid_TT+wid_fit; 

   dff_N XLXI_5 (.CLK(CLK),  

                .d(XLXN_2[wid_TT+wid_fit-1:0]),  

                .q(XLXN_11[wid_TT+wid_fit-1:0])); 

 

   defparam XLXI_6.n=wid_TT+wid_fit; 

   dff_N XLXI_6 (.CLK(CLK),  

                .d(XLXN_3[wid_TT+wid_fit-1:0]),  

                .q(XLXN_10[wid_TT+wid_fit-1:0])); 

 

   defparam XLXI_7.n=wid_TT+wid_fit; 

   dff_N XLXI_7 (.CLK(CLK),  

                .d(XLXN_4[wid_TT+wid_fit-1:0]),  

                .q(XLXN_12[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_8.wid_TT=wid_TT; 

 defparam XLXI_8.wid_fit=wid_fit; 

   sort2 XLXI_8 (.a(XLXN_9[wid_TT+wid_fit-1:0]),  

                 .b(XLXN_10[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_13[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_14[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_9.wid_TT=wid_TT; 

 defparam XLXI_9.wid_fit=wid_fit; 



 150

   sort2 XLXI_9 (.a(XLXN_11[wid_TT+wid_fit-1:0]),  

                 .b(XLXN_12[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_15[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_16[wid_TT+wid_fit-1:0])); 

 

   defparam XLXI_10.n=wid_TT+wid_fit; 

   dff_N XLXI_10 (.CLK(CLK),  

                 .d(XLXN_13[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_40[wid_TT+wid_fit-1:0])); 

 

   defparam XLXI_11.n=wid_TT+wid_fit; 

   dff_N XLXI_11 (.CLK(CLK),  

                 .d(XLXN_14[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_36[wid_TT+wid_fit-1:0])); 

 

   defparam XLXI_12.n=wid_TT+wid_fit; 

   dff_N XLXI_12 (.CLK(CLK),  

                 .d(XLXN_15[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_37[wid_TT+wid_fit-1:0])); 

 

    defparam XLXI_13.n=wid_TT+wid_fit; 

  dff_N XLXI_13 (.CLK(CLK),  

                 .d(XLXN_16[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_43[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_14.wid_TT=wid_TT; 

 defparam XLXI_14.wid_fit=wid_fit; 

   sort2 XLXI_14 (.a(XLXN_36[wid_TT+wid_fit-1:0]),  

                  .b(XLXN_37[wid_TT+wid_fit-1:0]),  

                  .aprime(XLXN_41[wid_TT+wid_fit-1:0]),  

                  .bprime(XLXN_42[wid_TT+wid_fit-1:0])); 

 

   defparam XLXI_31.n=wid_TT+wid_fit; 

   dff_N XLXI_31 (.CLK(CLK),  

                 .d(XLXN_40[wid_TT+wid_fit-1:0]),  

                 .q(aprime[wid_TT+wid_fit-1:0])); 

 

   defparam XLXI_32.n=wid_TT+wid_fit; 

   dff_N XLXI_32 (.CLK(CLK),  

                 .d(XLXN_41[wid_TT+wid_fit-1:0]),  

                 .q(bprime[wid_TT+wid_fit-1:0])); 
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   defparam XLXI_33.n=wid_TT+wid_fit; 

   dff_N XLXI_33 (.CLK(CLK),  

                 .d(XLXN_42[wid_TT+wid_fit-1:0]),  

                 .q(cprime[wid_TT+wid_fit-1:0])); 

 

   defparam XLXI_34.n=wid_TT+wid_fit; 

   dff_N XLXI_34 (.CLK(CLK),  

                 .d(XLXN_43[wid_TT+wid_fit-1:0]),  

                 .q(dprime[wid_TT+wid_fit-1:0])); 

endmodule 

 

module sort8(a,  

             b,  

             c,  

             CLK,  

             d,  

             e,  

             f,  

             g,  

             h,  

             aprime,  

             bprime,  

             cprime,  

             dprime,  

             eprime,  

             fprime,  

             gprime,  

             hprime); 

 

 parameter wid_TT=14; 

 parameter wid_fit=8; 

 

    input [wid_TT+wid_fit-1:0] a; 

    input [wid_TT+wid_fit-1:0] b; 

    input [wid_TT+wid_fit-1:0] c; 

    input CLK; 

    input [wid_TT+wid_fit-1:0] d; 

    input [wid_TT+wid_fit-1:0] e; 

    input [wid_TT+wid_fit-1:0] f; 

    input [wid_TT+wid_fit-1:0] g; 

    input [wid_TT+wid_fit-1:0] h; 

   output [wid_TT+wid_fit-1:0] aprime; 
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   output [wid_TT+wid_fit-1:0] bprime; 

   output [wid_TT+wid_fit-1:0] cprime; 

   output [wid_TT+wid_fit-1:0] dprime; 

   output [wid_TT+wid_fit-1:0] eprime; 

   output [wid_TT+wid_fit-1:0] fprime; 

   output [wid_TT+wid_fit-1:0] gprime; 

   output [wid_TT+wid_fit-1:0] hprime; 

    

   wire [wid_TT+wid_fit-1:0] XLXN_11; 

   wire [wid_TT+wid_fit-1:0] XLXN_12; 

   wire [wid_TT+wid_fit-1:0] XLXN_13; 

   wire [wid_TT+wid_fit-1:0] XLXN_14; 

   wire [wid_TT+wid_fit-1:0] XLXN_15; 

   wire [wid_TT+wid_fit-1:0] XLXN_16; 

   wire [wid_TT+wid_fit-1:0] XLXN_17; 

   wire [wid_TT+wid_fit-1:0] XLXN_18; 

   wire [wid_TT+wid_fit-1:0] XLXN_19; 

   wire [wid_TT+wid_fit-1:0] XLXN_20; 

   wire [wid_TT+wid_fit-1:0] XLXN_21; 

   wire [wid_TT+wid_fit-1:0] XLXN_22; 

   wire [wid_TT+wid_fit-1:0] XLXN_23; 

   wire [wid_TT+wid_fit-1:0] XLXN_24; 

   wire [wid_TT+wid_fit-1:0] XLXN_25; 

   wire [wid_TT+wid_fit-1:0] XLXN_26; 

   wire [wid_TT+wid_fit-1:0] XLXN_28; 

   wire [wid_TT+wid_fit-1:0] XLXN_29; 

   wire [wid_TT+wid_fit-1:0] XLXN_30; 

   wire [wid_TT+wid_fit-1:0] XLXN_31; 

   wire [wid_TT+wid_fit-1:0] XLXN_32; 

   wire [wid_TT+wid_fit-1:0] XLXN_33; 

   wire [wid_TT+wid_fit-1:0] XLXN_34; 

   wire [wid_TT+wid_fit-1:0] XLXN_35; 

   wire [wid_TT+wid_fit-1:0] XLXN_36; 

   wire [wid_TT+wid_fit-1:0] XLXN_37; 

   wire [wid_TT+wid_fit-1:0] XLXN_38; 

   wire [wid_TT+wid_fit-1:0] XLXN_39; 

   wire [wid_TT+wid_fit-1:0] XLXN_46; 

   wire [wid_TT+wid_fit-1:0] XLXN_47; 

   wire [wid_TT+wid_fit-1:0] XLXN_48; 

   wire [wid_TT+wid_fit-1:0] XLXN_49; 

   wire [wid_TT+wid_fit-1:0] XLXN_50; 

   wire [wid_TT+wid_fit-1:0] XLXN_51; 
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   wire [wid_TT+wid_fit-1:0] XLXN_60; 

   wire [wid_TT+wid_fit-1:0] XLXN_61; 

   wire [wid_TT+wid_fit-1:0] XLXN_62; 

   wire [wid_TT+wid_fit-1:0] XLXN_63; 

   wire [wid_TT+wid_fit-1:0] XLXN_64; 

   wire [wid_TT+wid_fit-1:0] XLXN_65; 

   wire [wid_TT+wid_fit-1:0] XLXN_66; 

   wire [wid_TT+wid_fit-1:0] XLXN_67; 

 

 defparam XLXI_1.wid_TT=wid_TT; 

 defparam XLXI_1.wid_fit=wid_fit; 

   sort4 XLXI_1 (.a(a[wid_TT+wid_fit-1:0]),  

                 .b(b[wid_TT+wid_fit-1:0]),  

                 .c(c[wid_TT+wid_fit-1:0]),  

                 .CLK(CLK),  

                 .d(d[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_11[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_15[wid_TT+wid_fit-1:0]),  

                 .cprime(XLXN_13[wid_TT+wid_fit-1:0]),  

                 .dprime(XLXN_17[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_2.wid_TT=wid_TT; 

 defparam XLXI_2.wid_fit=wid_fit; 

   sort4 XLXI_2 (.a(e[wid_TT+wid_fit-1:0]),  

                 .b(f[wid_TT+wid_fit-1:0]),  

                 .c(g[wid_TT+wid_fit-1:0]),  

                 .CLK(CLK),  

                 .d(h[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_12[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_16[wid_TT+wid_fit-1:0]),  

                 .cprime(XLXN_14[wid_TT+wid_fit-1:0]),  

                 .dprime(XLXN_18[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_3.wid_TT=wid_TT; 

 defparam XLXI_3.wid_fit=wid_fit; 

   sort2 XLXI_3 (.a(XLXN_11[wid_TT+wid_fit-1:0]),  

                 .b(XLXN_12[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_19[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_20[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_4.wid_TT=wid_TT; 

 defparam XLXI_4.wid_fit=wid_fit; 
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   sort2 XLXI_4 (.a(XLXN_13[wid_TT+wid_fit-1:0]),  

                 .b(XLXN_14[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_21[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_22[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_5.wid_TT=wid_TT; 

 defparam XLXI_5.wid_fit=wid_fit; 

   sort2 XLXI_5 (.a(XLXN_15[wid_TT+wid_fit-1:0]),  

                 .b(XLXN_16[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_23[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_24[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_6.wid_TT=wid_TT; 

 defparam XLXI_6.wid_fit=wid_fit; 

   sort2 XLXI_6 (.a(XLXN_17[wid_TT+wid_fit-1:0]),  

                 .b(XLXN_18[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_25[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_26[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_7.n=wid_TT+wid_fit; 

   dff_N XLXI_7 (.CLK(CLK),  

                .d(XLXN_19[wid_TT+wid_fit-1:0]),  

                .q(XLXN_32[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_8.n=wid_TT+wid_fit; 

   dff_N XLXI_8 (.CLK(CLK),  

                .d(XLXN_23[wid_TT+wid_fit-1:0]),  

                .q(XLXN_33[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_9.n=wid_TT+wid_fit; 

   dff_N XLXI_9 (.CLK(CLK),  

                .d(XLXN_21[wid_TT+wid_fit-1:0]),  

                .q(XLXN_28[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_10.n=wid_TT+wid_fit; 

   dff_N XLXI_10 (.CLK(CLK),  

                 .d(XLXN_25[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_30[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_11.n=wid_TT+wid_fit; 

   dff_N XLXI_11 (.CLK(CLK),  

                 .d(XLXN_20[wid_TT+wid_fit-1:0]),  
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                 .q(XLXN_29[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_12.n=wid_TT+wid_fit; 

   dff_N XLXI_12 (.CLK(CLK),  

                 .d(XLXN_24[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_31[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_13.n=wid_TT+wid_fit; 

   dff_N XLXI_13 (.CLK(CLK),  

                 .d(XLXN_22[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_38[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_14.n=wid_TT+wid_fit; 

   dff_N XLXI_14 (.CLK(CLK),  

                 .d(XLXN_26[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_39[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_23.wid_TT=wid_TT; 

 defparam XLXI_23.wid_fit=wid_fit; 

   sort2 XLXI_23 (.a(XLXN_28[wid_TT+wid_fit-1:0]),  

                  .b(XLXN_29[wid_TT+wid_fit-1:0]),  

                  .aprime(XLXN_34[wid_TT+wid_fit-1:0]),  

                  .bprime(XLXN_35[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_24.wid_TT=wid_TT; 

 defparam XLXI_24.wid_fit=wid_fit; 

   sort2 XLXI_24 (.a(XLXN_30[wid_TT+wid_fit-1:0]),  

                  .b(XLXN_31[wid_TT+wid_fit-1:0]),  

                  .aprime(XLXN_36[wid_TT+wid_fit-1:0]),  

                  .bprime(XLXN_37[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_25.n=wid_TT+wid_fit; 

   dff_N XLXI_25 (.CLK(CLK),  

                 .d(XLXN_32[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_60[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_26.n=wid_TT+wid_fit; 

   dff_N XLXI_26 (.CLK(CLK),  

                 .d(XLXN_33[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_46[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_27.n=wid_TT+wid_fit; 
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   dff_N XLXI_27 (.CLK(CLK),  

                 .d(XLXN_34[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_47[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_29.n=wid_TT+wid_fit; 

   dff_N XLXI_29 (.CLK(CLK),  

                 .d(XLXN_36[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_48[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_30.n=wid_TT+wid_fit; 

   dff_N XLXI_30 (.CLK(CLK),  

                 .d(XLXN_35[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_49[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_31.n=wid_TT+wid_fit; 

   dff_N XLXI_31 (.CLK(CLK),  

                 .d(XLXN_37[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_50[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_32.n=wid_TT+wid_fit; 

   dff_N XLXI_32 (.CLK(CLK),  

                 .d(XLXN_38[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_51[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_33.n=wid_TT+wid_fit; 

   dff_N XLXI_33 (.CLK(CLK),  

                 .d(XLXN_39[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_67[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_34.wid_TT=wid_TT; 

 defparam XLXI_34.wid_fit=wid_fit; 

   sort2 XLXI_34 (.a(XLXN_46[wid_TT+wid_fit-1:0]),  

                  .b(XLXN_47[wid_TT+wid_fit-1:0]),  

                  .aprime(XLXN_61[wid_TT+wid_fit-1:0]),  

                  .bprime(XLXN_62[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_35.wid_TT=wid_TT; 

 defparam XLXI_35.wid_fit=wid_fit; 

   sort2 XLXI_35 (.a(XLXN_48[wid_TT+wid_fit-1:0]),  

                  .b(XLXN_49[wid_TT+wid_fit-1:0]),  

                  .aprime(XLXN_63[wid_TT+wid_fit-1:0]),  

                  .bprime(XLXN_64[wid_TT+wid_fit-1:0])); 
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 defparam XLXI_36.wid_TT=wid_TT; 

 defparam XLXI_36.wid_fit=wid_fit; 

   sort2 XLXI_36 (.a(XLXN_50[wid_TT+wid_fit-1:0]),  

                  .b(XLXN_51[wid_TT+wid_fit-1:0]),  

                  .aprime(XLXN_65[wid_TT+wid_fit-1:0]),  

                  .bprime(XLXN_66[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_45.n=wid_TT+wid_fit; 

   dff_N XLXI_45 (.CLK(CLK),  

                 .d(XLXN_60[wid_TT+wid_fit-1:0]),  

                 .q(aprime[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_46.n=wid_TT+wid_fit; 

   dff_N XLXI_46 (.CLK(CLK),  

                 .d(XLXN_61[wid_TT+wid_fit-1:0]),  

                 .q(bprime[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_47.n=wid_TT+wid_fit; 

   dff_N XLXI_47 (.CLK(CLK),  

                 .d(XLXN_62[wid_TT+wid_fit-1:0]),  

                 .q(cprime[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_48.n=wid_TT+wid_fit; 

   dff_N XLXI_48 (.CLK(CLK),  

                 .d(XLXN_63[wid_TT+wid_fit-1:0]),  

                 .q(dprime[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_49.n=wid_TT+wid_fit; 

   dff_N XLXI_49 (.CLK(CLK),  

                 .d(XLXN_64[wid_TT+wid_fit-1:0]),  

                 .q(eprime[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_50.n=wid_TT+wid_fit; 

   dff_N XLXI_50 (.CLK(CLK),  

                 .d(XLXN_65[wid_TT+wid_fit-1:0]),  

                 .q(fprime[wid_TT+wid_fit-1:0])); 

  

 defparam XLXI_51.n=wid_TT+wid_fit; 

   dff_N XLXI_51 (.CLK(CLK),  

                 .d(XLXN_66[wid_TT+wid_fit-1:0]),  

                 .q(gprime[wid_TT+wid_fit-1:0])); 
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 defparam XLXI_52.n=wid_TT+wid_fit; 

   dff_N XLXI_52 (.CLK(CLK),  

                 .d(XLXN_67[wid_TT+wid_fit-1:0]),  

                 .q(hprime[wid_TT+wid_fit-1:0])); 

endmodule 

 

 

module   sort(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p,CLK, aprime, bprime, 
cprime, dprime, eprime, fprime, gprime, hprime, iprime, jprime, kprime, lprime, mprime, 
nprime, oprime, pprime); 

 

 parameter wid_TT=14; 

 parameter wid_fit=8; 

 

    input [wid_TT+wid_fit-1:0] a; 

    input [wid_TT+wid_fit-1:0] b; 

    input [wid_TT+wid_fit-1:0] c; 

    //input CLK; 

    input [wid_TT+wid_fit-1:0] d; 

    input [wid_TT+wid_fit-1:0] e; 

    input [wid_TT+wid_fit-1:0] f; 

    input [wid_TT+wid_fit-1:0] g; 

    input [wid_TT+wid_fit-1:0] h; 

    input [wid_TT+wid_fit-1:0] i; 

    input [wid_TT+wid_fit-1:0] j; 

    input [wid_TT+wid_fit-1:0] k; 

    input [wid_TT+wid_fit-1:0] l; 

    input [wid_TT+wid_fit-1:0] m; 

    input [wid_TT+wid_fit-1:0] n; 

    input [wid_TT+wid_fit-1:0] o; 

    input [wid_TT+wid_fit-1:0] p; 

    input CLK /* synthesis syn_noclockbuf=1 syn_maxfan=100000 */; 

   output [wid_TT+wid_fit-1:0] aprime; 

   output [wid_TT+wid_fit-1:0] bprime; 

   output [wid_TT+wid_fit-1:0] cprime; 

   output [wid_TT+wid_fit-1:0] dprime; 

   output [wid_TT+wid_fit-1:0] eprime; 

   output [wid_TT+wid_fit-1:0] fprime; 

   output [wid_TT+wid_fit-1:0] gprime; 

   output [wid_TT+wid_fit-1:0] hprime; 

   output [wid_TT+wid_fit-1:0] iprime; 

   output [wid_TT+wid_fit-1:0] jprime; 
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   output [wid_TT+wid_fit-1:0] kprime; 

   output [wid_TT+wid_fit-1:0] lprime; 

   output [wid_TT+wid_fit-1:0] mprime; 

   output [wid_TT+wid_fit-1:0] nprime; 

   output [wid_TT+wid_fit-1:0] oprime; 

   output [wid_TT+wid_fit-1:0] pprime; 

    

   wire [wid_TT+wid_fit-1:0] XLXN_17; 

   wire [wid_TT+wid_fit-1:0] XLXN_31; 

   wire [wid_TT+wid_fit-1:0] XLXN_49; 

   wire [wid_TT+wid_fit-1:0] XLXN_50; 

   wire [wid_TT+wid_fit-1:0] XLXN_51; 

   wire [wid_TT+wid_fit-1:0] XLXN_52; 

   wire [wid_TT+wid_fit-1:0] XLXN_53; 

   wire [wid_TT+wid_fit-1:0] XLXN_54; 

   wire [wid_TT+wid_fit-1:0] XLXN_55; 

   wire [wid_TT+wid_fit-1:0] XLXN_56; 

   wire [wid_TT+wid_fit-1:0] XLXN_57; 

   wire [wid_TT+wid_fit-1:0] XLXN_58; 

   wire [wid_TT+wid_fit-1:0] XLXN_59; 

   wire [wid_TT+wid_fit-1:0] XLXN_60; 

   wire [wid_TT+wid_fit-1:0] XLXN_61; 

   wire [wid_TT+wid_fit-1:0] XLXN_62; 

   wire [wid_TT+wid_fit-1:0] XLXN_63; 

   wire [wid_TT+wid_fit-1:0] XLXN_64; 

   wire [wid_TT+wid_fit-1:0] XLXN_65; 

   wire [wid_TT+wid_fit-1:0] XLXN_66; 

   wire [wid_TT+wid_fit-1:0] XLXN_67; 

   wire [wid_TT+wid_fit-1:0] XLXN_68; 

   wire [wid_TT+wid_fit-1:0] XLXN_69; 

   wire [wid_TT+wid_fit-1:0] XLXN_70; 

   wire [wid_TT+wid_fit-1:0] XLXN_71; 

   wire [wid_TT+wid_fit-1:0] XLXN_72; 

   wire [wid_TT+wid_fit-1:0] XLXN_73; 

   wire [wid_TT+wid_fit-1:0] XLXN_74; 

   wire [wid_TT+wid_fit-1:0] XLXN_75; 

   wire [wid_TT+wid_fit-1:0] XLXN_76; 

   wire [wid_TT+wid_fit-1:0] XLXN_77; 

   wire [wid_TT+wid_fit-1:0] XLXN_78; 

   wire [wid_TT+wid_fit-1:0] XLXN_278; 

   wire [wid_TT+wid_fit-1:0] XLXN_424; 

   wire [wid_TT+wid_fit-1:0] XLXN_452; 
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   wire [wid_TT+wid_fit-1:0] XLXN_453; 

   wire [wid_TT+wid_fit-1:0] XLXN_454; 

   wire [wid_TT+wid_fit-1:0] XLXN_455; 

   wire [wid_TT+wid_fit-1:0] XLXN_456; 

   wire [wid_TT+wid_fit-1:0] XLXN_457; 

   wire [wid_TT+wid_fit-1:0] XLXN_458; 

   wire [wid_TT+wid_fit-1:0] XLXN_459; 

   wire [wid_TT+wid_fit-1:0] XLXN_460; 

   wire [wid_TT+wid_fit-1:0] XLXN_461; 

   wire [wid_TT+wid_fit-1:0] XLXN_462; 

   wire [wid_TT+wid_fit-1:0] XLXN_463; 

   wire [wid_TT+wid_fit-1:0] XLXN_464; 

   wire [wid_TT+wid_fit-1:0] XLXN_465; 

   wire [wid_TT+wid_fit-1:0] XLXN_466; 

   wire [wid_TT+wid_fit-1:0] XLXN_467; 

   wire [wid_TT+wid_fit-1:0] XLXN_468; 

   wire [wid_TT+wid_fit-1:0] XLXN_469; 

   wire [wid_TT+wid_fit-1:0] XLXN_470; 

   wire [wid_TT+wid_fit-1:0] XLXN_471; 

   wire [wid_TT+wid_fit-1:0] XLXN_472; 

   wire [wid_TT+wid_fit-1:0] XLXN_473; 

   wire [wid_TT+wid_fit-1:0] XLXN_474; 

   wire [wid_TT+wid_fit-1:0] XLXN_475; 

   wire [wid_TT+wid_fit-1:0] XLXN_476; 

   wire [wid_TT+wid_fit-1:0] XLXN_477; 

   wire [wid_TT+wid_fit-1:0] XLXN_478; 

   wire [wid_TT+wid_fit-1:0] XLXN_479; 

   wire [wid_TT+wid_fit-1:0] XLXN_480; 

   wire [wid_TT+wid_fit-1:0] XLXN_481; 

   wire [wid_TT+wid_fit-1:0] XLXN_482; 

   wire [wid_TT+wid_fit-1:0] XLXN_483; 

   wire [wid_TT+wid_fit-1:0] XLXN_484; 

   wire [wid_TT+wid_fit-1:0] XLXN_485; 

   wire [wid_TT+wid_fit-1:0] XLXN_486; 

   wire [wid_TT+wid_fit-1:0] XLXN_487; 

   wire [wid_TT+wid_fit-1:0] XLXN_488; 

   wire [wid_TT+wid_fit-1:0] XLXN_489; 

   wire [wid_TT+wid_fit-1:0] XLXN_490; 

   wire [wid_TT+wid_fit-1:0] XLXN_491; 

   wire [wid_TT+wid_fit-1:0] XLXN_492; 

   wire [wid_TT+wid_fit-1:0] XLXN_493; 

   wire [wid_TT+wid_fit-1:0] XLXN_494; 
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   wire [wid_TT+wid_fit-1:0] XLXN_495; 

   wire [wid_TT+wid_fit-1:0] XLXN_496; 

   wire [wid_TT+wid_fit-1:0] XLXN_497; 

   wire [wid_TT+wid_fit-1:0] XLXN_498; 

   wire [wid_TT+wid_fit-1:0] XLXN_499; 

   wire [wid_TT+wid_fit-1:0] XLXN_500; 

   wire [wid_TT+wid_fit-1:0] XLXN_501; 

   wire [wid_TT+wid_fit-1:0] XLXN_502; 

   wire [wid_TT+wid_fit-1:0] XLXN_503; 

   wire [wid_TT+wid_fit-1:0] XLXN_515; 

   wire [wid_TT+wid_fit-1:0] XLXN_517; 

   wire [wid_TT+wid_fit-1:0] XLXN_518; 

   wire [wid_TT+wid_fit-1:0] XLXN_519; 

   wire [wid_TT+wid_fit-1:0] XLXN_520; 

   wire [wid_TT+wid_fit-1:0] XLXN_521; 

   wire [wid_TT+wid_fit-1:0] XLXN_522; 

   wire [wid_TT+wid_fit-1:0] XLXN_524; 

   wire [wid_TT+wid_fit-1:0] XLXN_525; 

   wire [wid_TT+wid_fit-1:0] XLXN_526; 

   wire [wid_TT+wid_fit-1:0] XLXN_527; 

   wire [wid_TT+wid_fit-1:0] XLXN_528; 

   wire [wid_TT+wid_fit-1:0] XLXN_529; 

   wire [wid_TT+wid_fit-1:0] XLXN_530; 

   wire [wid_TT+wid_fit-1:0] XLXN_531; 

   wire [wid_TT+wid_fit-1:0] XLXN_532; 

   wire [wid_TT+wid_fit-1:0] XLXN_533; 

   wire [wid_TT+wid_fit-1:0] XLXN_534; 

   wire [wid_TT+wid_fit-1:0] XLXN_535; 

   wire [wid_TT+wid_fit-1:0] XLXN_536; 

   wire [wid_TT+wid_fit-1:0] XLXN_537; 

   wire [wid_TT+wid_fit-1:0] XLXN_538; 

   wire [wid_TT+wid_fit-1:0] XLXN_539; 

   wire [wid_TT+wid_fit-1:0] XLXN_540; 

   wire [wid_TT+wid_fit-1:0] XLXN_541; 

   wire [wid_TT+wid_fit-1:0] XLXN_542; 

   wire [wid_TT+wid_fit-1:0] XLXN_543; 

   wire [wid_TT+wid_fit-1:0] XLXN_544; 

 

 defparam XLXI_1.wid_TT=wid_TT; 

 defparam XLXI_1.wid_fit=wid_fit; 

   sort8 XLXI_1 (.a(a[wid_TT+wid_fit-1:0]),  

                 .b(b[wid_TT+wid_fit-1:0]),  
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                 .c(c[wid_TT+wid_fit-1:0]),  

                 .CLK(CLK),  

                 .d(d[wid_TT+wid_fit-1:0]),  

                 .e(e[wid_TT+wid_fit-1:0]),  

                 .f(f[wid_TT+wid_fit-1:0]),  

                 .g(g[wid_TT+wid_fit-1:0]),  

                 .h(h[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_17[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_51[wid_TT+wid_fit-1:0]),  

                 .cprime(XLXN_55[wid_TT+wid_fit-1:0]),  

                 .dprime(XLXN_59[wid_TT+wid_fit-1:0]),  

                 .eprime(XLXN_63[wid_TT+wid_fit-1:0]),  

                 .fprime(XLXN_67[wid_TT+wid_fit-1:0]),  

                 .gprime(XLXN_71[wid_TT+wid_fit-1:0]),  

                 .hprime(XLXN_75[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_2.wid_TT=wid_TT; 

 defparam XLXI_2.wid_fit=wid_fit; 

   sort8 XLXI_2 (.a(i[wid_TT+wid_fit-1:0]),  

                 .b(j[wid_TT+wid_fit-1:0]),  

                 .c(k[wid_TT+wid_fit-1:0]),  

                 .CLK(CLK),  

                 .d(l[wid_TT+wid_fit-1:0]),  

                 .e(m[wid_TT+wid_fit-1:0]),  

                 .f(n[wid_TT+wid_fit-1:0]),  

                 .g(o[wid_TT+wid_fit-1:0]),  

                 .h(p[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_31[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_52[wid_TT+wid_fit-1:0]),  

                 .cprime(XLXN_56[wid_TT+wid_fit-1:0]),  

                 .dprime(XLXN_60[wid_TT+wid_fit-1:0]),  

                 .eprime(XLXN_64[wid_TT+wid_fit-1:0]),  

                 .fprime(XLXN_68[wid_TT+wid_fit-1:0]),  

                 .gprime(XLXN_72[wid_TT+wid_fit-1:0]),  

                 .hprime(XLXN_76[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_3.wid_TT=wid_TT; 

 defparam XLXI_3.wid_fit=wid_fit; 

   sort2 XLXI_3 (.a(XLXN_17[wid_TT+wid_fit-1:0]),  

                 .b(XLXN_31[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_49[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_50[wid_TT+wid_fit-1:0])); 
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 defparam XLXI_4.wid_TT=wid_TT; 

 defparam XLXI_4.wid_fit=wid_fit; 

   sort2 XLXI_4 (.a(XLXN_51[wid_TT+wid_fit-1:0]),  

                 .b(XLXN_52[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_53[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_54[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_5.wid_TT=wid_TT; 

 defparam XLXI_5.wid_fit=wid_fit; 

   sort2 XLXI_5 (.a(XLXN_55[wid_TT+wid_fit-1:0]),  

                 .b(XLXN_56[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_57[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_58[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_6.wid_TT=wid_TT; 

 defparam XLXI_6.wid_fit=wid_fit; 

   sort2 XLXI_6 (.a(XLXN_59[wid_TT+wid_fit-1:0]),  

                 .b(XLXN_60[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_61[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_62[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_7.wid_TT=wid_TT; 

 defparam XLXI_7.wid_fit=wid_fit; 

   sort2 XLXI_7 (.a(XLXN_63[wid_TT+wid_fit-1:0]),  

                 .b(XLXN_64[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_65[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_66[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_8.wid_TT=wid_TT; 

 defparam XLXI_8.wid_fit=wid_fit; 

   sort2 XLXI_8 (.a(XLXN_67[wid_TT+wid_fit-1:0]),  

                 .b(XLXN_68[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_69[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_70[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_9.wid_TT=wid_TT; 

 defparam XLXI_9.wid_fit=wid_fit; 

   sort2 XLXI_9 (.a(XLXN_71[wid_TT+wid_fit-1:0]),  

                 .b(XLXN_72[wid_TT+wid_fit-1:0]),  

                 .aprime(XLXN_73[wid_TT+wid_fit-1:0]),  

                 .bprime(XLXN_74[wid_TT+wid_fit-1:0])); 
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 defparam XLXI_10.wid_TT=wid_TT; 

 defparam XLXI_10.wid_fit=wid_fit; 

  sort2 XLXI_10 (.a(XLXN_75[wid_TT+wid_fit-1:0]),  

                  .b(XLXN_76[wid_TT+wid_fit-1:0]),  

                  .aprime(XLXN_77[wid_TT+wid_fit-1:0]),  

                  .bprime(XLXN_78[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_27.n=wid_TT+wid_fit; 

   dff_N XLXI_27 (.CLK(CLK),  

                 .d(XLXN_49[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_452[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_28.n=wid_TT+wid_fit; 

   dff_N XLXI_28 (.CLK(CLK),  

                 .d(XLXN_53[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_453[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_29.n=wid_TT+wid_fit; 

   dff_N XLXI_29 (.CLK(CLK),  

                 .d(XLXN_57[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_454[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_30.n=wid_TT+wid_fit; 

   dff_N XLXI_30 (.CLK(CLK),  

                 .d(XLXN_61[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_455[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_31.n=wid_TT+wid_fit; 

   dff_N XLXI_31 (.CLK(CLK),  

                 .d(XLXN_65[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_460[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_32.n=wid_TT+wid_fit; 

   dff_N XLXI_32 (.CLK(CLK),  

                 .d(XLXN_69[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_464[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_33.n=wid_TT+wid_fit; 

   dff_N XLXI_33 (.CLK(CLK),  

                 .d(XLXN_73[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_468[wid_TT+wid_fit-1:0])); 
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 defparam XLXI_34.n=wid_TT+wid_fit; 

   dff_N XLXI_34 (.CLK(CLK),  

                 .d(XLXN_77[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_472[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_35.n=wid_TT+wid_fit; 

   dff_N XLXI_35 (.CLK(CLK),  

                 .d(XLXN_50[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_462[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_36.n=wid_TT+wid_fit; 

   dff_N XLXI_36 (.CLK(CLK),  

                 .d(XLXN_54[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_466[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_37.n=wid_TT+wid_fit; 

   dff_N XLXI_37 (.CLK(CLK),  

                 .d(XLXN_58[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_470[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_38.n=wid_TT+wid_fit; 

   dff_N XLXI_38 (.CLK(CLK),  

                 .d(XLXN_62[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_473[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_43.n=wid_TT+wid_fit; 

   dff_N XLXI_43 (.CLK(CLK),  

                 .d(XLXN_66[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_459[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_44.n=wid_TT+wid_fit; 

   dff_N XLXI_44 (.CLK(CLK),  

                 .d(XLXN_70[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_458[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_45.n=wid_TT+wid_fit; 

   dff_N XLXI_45 (.CLK(CLK),  

                 .d(XLXN_74[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_457[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_46.n=wid_TT+wid_fit; 
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   dff_N XLXI_46 (.CLK(CLK),  

                 .d(XLXN_78[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_456[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_55.n=wid_TT+wid_fit; 

   dff_N XLXI_55 (.CLK(CLK),  

                 .d(XLXN_452[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_476[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_56.n=wid_TT+wid_fit; 

   dff_N XLXI_56 (.CLK(CLK),  

                 .d(XLXN_453[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_477[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_57.n=wid_TT+wid_fit; 

   dff_N XLXI_57 (.CLK(CLK),  

                 .d(XLXN_454[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_480[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_58.n=wid_TT+wid_fit; 

   dff_N XLXI_58 (.CLK(CLK),  

                 .d(XLXN_455[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_492[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_59.n=wid_TT+wid_fit; 

   dff_N XLXI_59 (.CLK(CLK),  

                 .d(XLXN_461[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_482[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_60.n=wid_TT+wid_fit; 

   dff_N XLXI_60 (.CLK(CLK),  

                 .d(XLXN_465[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_493[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_61.n=wid_TT+wid_fit; 

   dff_N XLXI_61 (.CLK(CLK),  

                 .d(XLXN_469[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_496[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_62.n=wid_TT+wid_fit; 

   dff_N XLXI_62 (.CLK(CLK),  

                 .d(XLXN_475[wid_TT+wid_fit-1:0]),  
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                 .q(XLXN_502[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_63.n=wid_TT+wid_fit; 

   dff_N XLXI_63 (.CLK(CLK),  

                 .d(XLXN_463[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_497[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_64.n=wid_TT+wid_fit; 

   dff_N XLXI_64 (.CLK(CLK),  

                 .d(XLXN_467[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_503[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_65.n=wid_TT+wid_fit; 

   dff_N XLXI_65 (.CLK(CLK),  

                 .d(XLXN_471[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_491[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_66.n=wid_TT+wid_fit; 

   dff_N XLXI_66 (.CLK(CLK),  

                 .d(XLXN_474[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_487[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_67.n=wid_TT+wid_fit; 

   dff_N XLXI_67 (.CLK(CLK),  

                 .d(XLXN_459[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_488[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_68.n=wid_TT+wid_fit; 

   dff_N XLXI_68 (.CLK(CLK),  

                 .d(XLXN_458[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_484[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_69.n=wid_TT+wid_fit; 

   dff_N XLXI_69 (.CLK(CLK),  

                 .d(XLXN_457[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_478[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_70.n=wid_TT+wid_fit; 

   dff_N XLXI_70 (.CLK(CLK),  

                 .d(XLXN_456[wid_TT+wid_fit-1:0]),  

                 .q(XLXN_479[wid_TT+wid_fit-1:0])); 
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 defparam XLXI_145.n=wid_TT+wid_fit; 

   dff_N XLXI_145 (.CLK(CLK),  

                  .d(XLXN_476[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_278[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_146.n=wid_TT+wid_fit; 

   dff_N XLXI_146 (.CLK(CLK),  

                  .d(XLXN_477[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_515[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_147.n=wid_TT+wid_fit; 

   dff_N XLXI_147 (.CLK(CLK),  

                  .d(XLXN_481[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_517[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_148.n=wid_TT+wid_fit; 

   dff_N XLXI_148 (.CLK(CLK),  

                  .d(XLXN_494[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_520[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_149.n=wid_TT+wid_fit; 

   dff_N XLXI_149 (.CLK(CLK),  

                  .d(XLXN_483[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_521[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_150.n=wid_TT+wid_fit; 

   dff_N XLXI_150 (.CLK(CLK),  

                  .d(XLXN_498[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_525[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_151.n=wid_TT+wid_fit; 

   dff_N XLXI_151 (.CLK(CLK),  

                  .d(XLXN_495[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_526[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_152.n=wid_TT+wid_fit; 

   dff_N XLXI_152 (.CLK(CLK),  

                  .d(XLXN_500[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_529[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_153.n=wid_TT+wid_fit; 

   dff_N XLXI_153 (.CLK(CLK),  
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                  .d(XLXN_499[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_530[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_154.n=wid_TT+wid_fit; 

   dff_N XLXI_154 (.CLK(CLK),  

                  .d(XLXN_501[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_533[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_155.n=wid_TT+wid_fit; 

   dff_N XLXI_155 (.CLK(CLK),  

                  .d(XLXN_490[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_534[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_156.n=wid_TT+wid_fit; 

   dff_N XLXI_156 (.CLK(CLK),  

                  .d(XLXN_486[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_537[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_157.n=wid_TT+wid_fit; 

   dff_N XLXI_157 (.CLK(CLK),  

                  .d(XLXN_489[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_538[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_158.n=wid_TT+wid_fit; 

   dff_N XLXI_158 (.CLK(CLK),  

                  .d(XLXN_485[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_544[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_159.n=wid_TT+wid_fit; 

   dff_N XLXI_159 (.CLK(CLK),  

                  .d(XLXN_478[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_543[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_160.n=wid_TT+wid_fit; 

   dff_N XLXI_160 (.CLK(CLK),  

                  .d(XLXN_479[wid_TT+wid_fit-1:0]),  

                  .q(XLXN_424[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_191.n=wid_TT+wid_fit; 

   dff_N XLXI_191 (.CLK(CLK),  

                  .d(XLXN_278[wid_TT+wid_fit-1:0]),  

                  .q(aprime[wid_TT+wid_fit-1:0])); 
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 defparam XLXI_192.n=wid_TT+wid_fit; 

   dff_N XLXI_192 (.CLK(CLK),  

                  .d(XLXN_519[wid_TT+wid_fit-1:0]),  

                  .q(bprime[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_193.n=wid_TT+wid_fit; 

   dff_N XLXI_193 (.CLK(CLK),  

                  .d(XLXN_518[wid_TT+wid_fit-1:0]),  

                  .q(cprime[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_194.n=wid_TT+wid_fit; 

   dff_N XLXI_194 (.CLK(CLK),  

                  .d(XLXN_524[wid_TT+wid_fit-1:0]),  

                  .q(dprime[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_195.n=wid_TT+wid_fit; 

   dff_N XLXI_195 (.CLK(CLK),  

                  .d(XLXN_522[wid_TT+wid_fit-1:0]),  

                  .q(eprime[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_196.n=wid_TT+wid_fit; 

   dff_N XLXI_196 (.CLK(CLK),  

                  .d(XLXN_527[wid_TT+wid_fit-1:0]),  

                  .q(fprime[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_197.n=wid_TT+wid_fit; 

   dff_N XLXI_197 (.CLK(CLK),  

                  .d(XLXN_528[wid_TT+wid_fit-1:0]),  

                  .q(gprime[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_198.n=wid_TT+wid_fit; 

   dff_N XLXI_198 (.CLK(CLK),  

                  .d(XLXN_531[wid_TT+wid_fit-1:0]),  

                  .q(hprime[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_199.n=wid_TT+wid_fit; 

   dff_N XLXI_199 (.CLK(CLK),  

                  .d(XLXN_532[wid_TT+wid_fit-1:0]),  

                  .q(iprime[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_200.n=wid_TT+wid_fit; 
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   dff_N XLXI_200 (.CLK(CLK),  

                  .d(XLXN_535[wid_TT+wid_fit-1:0]),  

                  .q(jprime[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_201.n=wid_TT+wid_fit; 

   dff_N XLXI_201 (.CLK(CLK),  

                  .d(XLXN_536[wid_TT+wid_fit-1:0]),  

                  .q(kprime[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_202.n=wid_TT+wid_fit; 

   dff_N XLXI_202 (.CLK(CLK),  

                  .d(XLXN_539[wid_TT+wid_fit-1:0]),  

                  .q(lprime[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_203.n=wid_TT+wid_fit; 

   dff_N XLXI_203 (.CLK(CLK),  

                  .d(XLXN_540[wid_TT+wid_fit-1:0]),  

                  .q(mprime[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_204.n=wid_TT+wid_fit; 

   dff_N XLXI_204 (.CLK(CLK),  

                  .d(XLXN_541[wid_TT+wid_fit-1:0]),  

                  .q(nprime[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_205.n=wid_TT+wid_fit; 

   dff_N XLXI_205 (.CLK(CLK),  

                  .d(XLXN_542[wid_TT+wid_fit-1:0]),  

                  .q(oprime[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_206.n=wid_TT+wid_fit; 

   dff_N XLXI_206 (.CLK(CLK),  

                  .d(XLXN_424[wid_TT+wid_fit-1:0]),  

                  .q(pprime[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_282.wid_TT=wid_TT; 

 defparam XLXI_282.wid_fit=wid_fit; 

   sort2 XLXI_282 (.a(XLXN_460[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_462[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_461[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_463[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_283.wid_TT=wid_TT; 
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 defparam XLXI_283.wid_fit=wid_fit; 

   sort2 XLXI_283 (.a(XLXN_464[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_466[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_465[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_467[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_284.wid_TT=wid_TT; 

 defparam XLXI_284.wid_fit=wid_fit; 

   sort2 XLXI_284 (.a(XLXN_468[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_470[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_469[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_471[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_285.wid_TT=wid_TT; 

 defparam XLXI_285.wid_fit=wid_fit; 

   sort2 XLXI_285 (.a(XLXN_472[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_473[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_475[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_474[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_286.wid_TT=wid_TT; 

 defparam XLXI_286.wid_fit=wid_fit; 

   sort2 XLXI_286 (.a(XLXN_480[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_482[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_481[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_483[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_287.wid_TT=wid_TT; 

 defparam XLXI_287.wid_fit=wid_fit; 

   sort2 XLXI_287 (.a(XLXN_492[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_493[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_494[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_495[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_288.wid_TT=wid_TT; 

 defparam XLXI_288.wid_fit=wid_fit; 

   sort2 XLXI_288 (.a(XLXN_496[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_497[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_498[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_499[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_289.wid_TT=wid_TT; 
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 defparam XLXI_289.wid_fit=wid_fit; 

   sort2 XLXI_289 (.a(XLXN_502[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_503[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_500[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_501[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_290.wid_TT=wid_TT; 

 defparam XLXI_290.wid_fit=wid_fit; 

   sort2 XLXI_290 (.a(XLXN_491[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_488[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_490[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_489[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_291.wid_TT=wid_TT; 

 defparam XLXI_291.wid_fit=wid_fit; 

   sort2 XLXI_291 (.a(XLXN_487[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_484[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_486[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_485[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_298.wid_TT=wid_TT; 

 defparam XLXI_298.wid_fit=wid_fit; 

   sort2 XLXI_298 (.a(XLXN_515[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_517[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_519[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_518[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_299.wid_TT=wid_TT; 

 defparam XLXI_299.wid_fit=wid_fit; 

   sort2 XLXI_299 (.a(XLXN_520[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_521[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_524[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_522[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_300.wid_TT=wid_TT; 

 defparam XLXI_300.wid_fit=wid_fit; 

   sort2 XLXI_300 (.a(XLXN_525[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_526[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_527[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_528[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_301.wid_TT=wid_TT; 
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 defparam XLXI_301.wid_fit=wid_fit; 

   sort2 XLXI_301 (.a(XLXN_529[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_530[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_531[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_532[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_302.wid_TT=wid_TT; 

 defparam XLXI_302.wid_fit=wid_fit; 

   sort2 XLXI_302 (.a(XLXN_533[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_534[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_535[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_536[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_303.wid_TT=wid_TT; 

 defparam XLXI_303.wid_fit=wid_fit; 

   sort2 XLXI_303 (.a(XLXN_537[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_538[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_539[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_540[wid_TT+wid_fit-1:0])); 

 

 defparam XLXI_304.wid_TT=wid_TT; 

 defparam XLXI_304.wid_fit=wid_fit; 

   sort2 XLXI_304 (.a(XLXN_544[wid_TT+wid_fit-1:0]),  

                   .b(XLXN_543[wid_TT+wid_fit-1:0]),  

                   .aprime(XLXN_541[wid_TT+wid_fit-1:0]),  

                   .bprime(XLXN_542[wid_TT+wid_fit-1:0])); 

endmodule 

 

 

 

module ga(rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9, rnd10, 
rnd11, rnd12, rnd13, rnd14, rnd15, min_fit, crc_sigs, crosscode, CLR, VALID, ITER, CLK, 
w_out0, w_out1, w_out2, w_out3, w_out4, w_out5, w_out6, w_out7, w_out8, w_out9, w_out10, 
w_out11, w_out12, w_out13, w_out14, w_out15); 

 parameter wid_TT=14; 

 parameter wid_fit=8; 

  

 input [13:0] rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9, 
rnd10, rnd11, rnd12, rnd13, rnd14, rnd15; 

 input [63:0] crc_sigs; 

 input [13:0] crosscode; 

 input [7:0] min_fit; 

 input CLR, VALID, ITER; 

 input CLK /* synthesis syn_noclockbuf=1 syn_maxfan=100000 */ ; 
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 output [13:0] w_out0, w_out1, w_out2, w_out3, w_out4, w_out5, w_out6, 
w_out7, w_out8, w_out9, w_out10, w_out11, w_out12, w_out13, w_out14, w_out15; 

  

 wire [31:0] crc_adr; 

  

 wire [31:0] wcrc_adr; 

 

 wire [13:0] w_out0, w_out1, w_out2, w_out3, w_out4, w_out5, w_out6, 
w_out7, w_out8, w_out9, w_out10, w_out11, w_out12, w_out13, w_out14, w_out15; 

 

 wire [wid_TT+wid_fit-1:0] w_new0, w_new1, w_new2, w_new3, w_new4, w_new5, 
w_new6, w_new7, w_new8, w_new9, w_new10, w_new11, w_new12, w_new13, w_new14, w_new15; 

 wire [wid_TT+wid_fit-1:0] w_sort0, w_sort1, w_sort2, w_sort3, w_sort4, 
w_sort5, w_sort6, w_sort7, w_sort8, w_sort9, w_sort10, w_sort11, w_sort12, w_sort13, 
w_sort14, w_sort15;  

 

 //crc_sigs has the format of 32:1 CRC input value, 0 control line 

 //crc adr has the format of 8:1 adr lines, 0 control line 

 //If the control line is 1, the ROMs select the CRC address 

 CRC_calc crc(crc_sigs[32:1], wcrc_adr); 

 

 defparam ff_crc.n=32; 

 dff_eNB ff_crc(wcrc_adr, VALID&ITER, CLK, crc_adr); 

 

 defparam ff_crc_ctrl.n=1; 

 dff_eNB ff_crc_ctrl(crc_sigs[0], VALID&ITER, CLK, wcrc_ctrl); 

 

 assign t1 = w_new0; 

 assign t2 = min_fit; 

 //strgen(prev0, prev1, prev2, prev3, prev4, prev5, prev6, prev7, prev8, 
prev9, prev10, prev11, prev12, prev13, prev14, prev15, reset_val,  

 //   CLR, VALID, ITER, CLK,  

 //   r_next0, r_next1, r_next2, r_next3, r_next4, 
r_next5, r_next6, r_next7, r_next8, r_next9, r_next10,r_next11, r_next12, r_next13, 
r_next14, r_next15); 

 strgen sg(rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9, 
rnd10, rnd11, rnd12, rnd13, rnd14, rnd15, 

    w_out0[13:0], w_out1[13:0], w_out2[13:0], 
w_out3[13:0], w_out4[13:0], w_out5[13:0], w_out6[13:0], w_out7[13:0], w_out8[13:0], 
w_out9[13:0], w_out10[13:0], w_out11[13:0], w_out12[13:0], w_out13[13:0], w_out14[13:0], 
w_out15[13:0], 

   min_fit, CLR, VALID, ITER, CLK, 

   w_new0, w_new1, w_new2, w_new3, w_new4, w_new5, w_new6, 
w_new7, w_new8, w_new9, w_new10, w_new11, w_new12, w_new13, w_new14, w_new15); 

  

 defparam s.wid_TT=wid_TT; 

 defparam s.wid_fit=wid_fit; 
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 sort s(w_new0, w_new1, w_new2, w_new3, w_new4, w_new5, w_new6, w_new7, 
w_new8, w_new9, w_new10, w_new11, w_new12, w_new13, w_new14, w_new15, CLK,  

   w_sort0, w_sort1, w_sort2, w_sort3, w_sort4, w_sort5, 
w_sort6, w_sort7, w_sort8, w_sort9, w_sort10, w_sort11, w_sort12, w_sort13, w_sort14, 
w_sort15);  

  

 defparam c.wid_TT=wid_TT; 

 defparam c.wid_fit=wid_fit; 

 crossmut c(w_sort0, w_sort1, w_sort2, w_sort3, w_sort4, 

    w_sort5, w_sort6, w_sort7, w_sort8, w_sort9, 

    w_sort10, w_sort11, w_sort12, w_sort13, 

    w_sort14, w_sort15,  

    {crc_adr[7:0], wcrc_ctrl}, crosscode, CLR, VALID, 
ITER, CLK, 

    w_out0[wid_TT-1:0], w_out1[wid_TT-1:0], 
w_out2[wid_TT-1:0], w_out3[wid_TT-1:0], w_out4[wid_TT-1:0], w_out5[wid_TT-1:0], 
w_out6[wid_TT-1:0], w_out7[wid_TT-1:0],  

    w_out8[wid_TT-1:0], w_out9[wid_TT-1:0], 
w_out10[wid_TT-1:0], w_out11[wid_TT-1:0], w_out12[wid_TT-1:0], w_out13[wid_TT-1:0], 
w_out14[wid_TT-1:0], w_out15[wid_TT-1:0]); 

 

endmodule 
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